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Abstract. The main purpose of this paper is to present and discuss a methodology for a dy-
namic modeling and analysis of rigid multibody systems with translational clearance joints. 
The methodology is based on the nonsmooth dynamics approach, in which the interaction of 
the elements that constitute a translational clearance joint is modeled with multiple frictional 
unilateral constraints. In the following, the most fundamental issues of the nonsmooth dynam-
ics theory are revised. The dynamics of rigid multibody systems are stated as an equality of 
measures, which are formulated at the velocity-impulse level. The equations of motion are 
complemented with constitutive laws for the normal and tangential directions. In this work, 
the unilateral constraints are described by a set-valued force law of the type of Signorini’s 
condition, while the frictional contacts are characterized by a set-valued force law of the type 
of Coulomb’s law for dry friction. The resulting contact-impact problem is formulated and 
solved as a linear complementarity problem, which is embedded in the Moreau’s time-
stepping method. Finally, the classical slider-crank mechanism is considered as a demonstra-
tive application example and numerical results are presented. The results obtained show that 
the existence of clearance joints in the modeling of multibody systems influences their dynam-
ics response. 
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1 INTRODUCTION 
Manufacturing tolerances, wear and material deformation lead to imperfect joints and, 

therefore, clearances. These clearances modify the dynamic response of the system, justify the 
deviations between the numerical predictions and the experimental measurements and eventu-
ally lead to important deviations between the projected behavior of the mechanisms and their 
real outcome. The presence of clearance in joints is a complex and important issue in the real-
istic modeling of multibody systems. This aspect gains paramount importance due to the de-
mand for the proper design of the real joints in many industrial applications. Over the last few 
years, extensive work has been done to study the dynamic effect of the revolute joints with 
clearance in multibody systems. However, translational joints with clearance have received 
less attention [1-4]. 

Indeed, a number of theoretical and experimental works devoted to the research on multi-
body mechanical systems with realistic joints has been published recently. However, most of 
these works focus on revolute joints with and without lubrication effects. An extensive litera-
ture review on the issue of modeling and simulation of multibody systems with revolute and 
spherical clearance joints can be found in the work by Flores et al. [2]. In contrast to the revo-
lute and spherical clearance joints, not much work has been done to model translational joints 
with clearance because in this case several different configurations between the joints ele-
ments can take place. In fact, the contact configurations of slider and guide include: (i) no 
contact between the two elements; (ii) one corner of the slider is in contact with the guide sur-
face; (iii) two adjacent slider corners are in contact with the guide surface, which corresponds 
to have a face of the slider in contact with the guide surface; (iv) two opposite slider corners 
are in contact with the guide surface [5-7]. Moreover, each contact point may be in stick or in 
slip phase, which greatly enlarges the number of contact configuration. The conditions for 
switching from one case to another depend on the system’s dynamic response.  

Farahanchi and Shaw [8] studied the dynamic response of a planar slider-crank mechanism 
with slider clearance. They demonstrated how complex the system’s response is, which can be 
chaotic or periodic. More recently, Thümmel and Funk [9] used the complementarity ap-
proach to model impact and friction in a slider-crank mechanism with both revolute and trans-
lational clearance joints. With the purpose to analyze the slider crank mechanism, Wilson and 
Fawcett [10] derived the equations of motion for all different possible configurations of the 
slider motion inside the guide, resulting in a total of 40 equations. They also showed how the 
slider motion in a translational clearance joint depends on the geometry, speed and mass dis-
tribution.  

Therefore, in the present work, the nonsmooth dynamics approach is used to model the 
type of multibody systems, due to its simplicity and ability to deal with all possible different 
configurations in a unified manner. The methodology is based on the nonsmooth dynamics 
approach, in which the interaction of the colliding bodies is modeled with multiple frictional 
unilateral constraints. The dynamics of rigid multibody systems are stated as an equality of 
measures, which are formulated at the velocity-impulse level. The equations of motion are 
complemented with constitutive laws for the forces and impulses the normal and tangential 
directions. In this work, the unilateral constraints are described by a set-valued force law of 
the type of Signorini’s condition, while the frictional contacts are characterized by a set-
valued force law of the type of Coulomb’s law for dry friction. The resulting contact-impact 
problem is formulated and solved as a linear complementarity problem, which is embedded in 
the Moreau’s time-stepping method. 
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BASIC SET-VALUED ELEMENTS 

1.1 The linear complementarity problem 
A linear complementarity problem (LCP) is a set of linear equations that can be written as, 

[10, 11],  
 

= +y Ax b  (1)
 

subjected to the inequality complementarity conditions, 
 

≥y 0 ,     ≥x 0 ,     T 0=y x  (2)

 
for which the vectors x and y have to be evaluated for given A and b. In other words, the LCP 
is the problem of finding solutions n∈x  and n∈y  of (1) and (2), where b is an n-
dimensional constant column and A is a given square matrix of dimension n. The inequality  
complementarity conditions expressed by Eq. (2) are often written in the form, 

 
≤ ⊥ ≥0 y x 0  (3)

 
where ⊥y x  denotes T 0=y x . An LCP can have a unique solution, multiple solutions or no 
solution at all [13, 14]. All existing solutions can be found using enumerative methods, which 
treat the problem by a combinatorial evolution of the complementarity condition xi yi=0. From 
the complementarity condition it follows that when xi > 0, then yi = 0, and vice versa. An LCP 
of dimension n provides 2n different combinations of n variables, which are allowed to be 
greater than zero at the same time. For large dimensions, enumerative methods become nu-
merically expensive since 2n grows rapidly. A more efficient algorithm is the complementar-
ity pivot algorithm, usually referred to as Lemke’s algorithm [15-17]. A drawback of Lemke’s 
algorithm is that it is not guaranteed to find a solution for arbitrary A (convergence is guaran-
teed when A is a P-matrix). Other efficient algorithms to solve LCP can be found in the work 
by Cottle et al. [12]. 

1.2 The unilateral primitive 
One of the most important multifunctions (or set-valued maps) related to complementarity 

is the unilateral primitive, denoted by Upr. The unilateral primitive is a maximal monotone 
set-valued map on 0

+  defined as [18, 19], 
 

{ }0 0
Upr( ) : ( , 0] 0

0

x
x x

x

>⎧
⎪= −∞ =⎨
⎪ ∅ <⎩

 (4)

 
The graph of the unilateral primitive map is depicted in Fig. 1(a). Thus, each complemen-

tarity condition of an LCP can be expressed as one Upr inclusion, 
 

Upr( ) 0, 0, 0y x y x xy− ∈ ⇔ ≥ ≥ =  (5)
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Figure 1: (a) The map x → Upr(x); (b) The map x → Sgn(x); (c) The decomposition Sgn(x) into Upr(x). 

Unilateral primitives are used in mechanics at the displacement level and at the velocity 
level to model unilateral geometric and kinematic constraints, such as free plays with stops, 
sprag clutches among others. The associated set-valued force laws are conveniently stated as 
inclusions of (5). 

1.3 The Sgn-multifunction 
A second maximal monotone set-valued map, frequently used in complementarity prob-

lems, is the filled-in relay function Sgn-multifunction, which is defined by [18, 19], 
 

{ }

{ }

1 0
Sgn( ) : [ 1, 1] 0

1 0

x
x x

x

+ >⎧
⎪= − + =⎨
⎪ − <⎩

 (6)

 
It is important to highlight that, while the classical sgn-function is defined with sgn(0)=0, 

the Sgn-multifunction is set-valued at x=0. The graph of the Sgn-multifunction is shown in 
Fig. 1(b). An inclusion in the Sgn-multifunction can always be represented by two inclusions 
involving the unilateral primitive. The decomposition can be written as, 

 
Upr( ) 1

Sgn( ) , s.t. Upr( ) 1
R

R L L

R L

y x
y x x x y x

x x x

− ∈ + +⎧
⎪− ∈ ⇔ ∃ − ∈ − −⎨
⎪ = −⎩

 (7)

 
Using Eq. (5), the Eq. (7) can be rewritten in terms of complementarities, 
 

1 0, 0, (1 ) 0
Sgn( ) , s.t. 1 0, 0, (1 ) 0

R R

R L L L

R L

y x y x
y x x x y x y x

x x x

+ ≥ ≥ + =⎧
⎪− ∈ ⇔ ∃ − ≥ ≥ − =⎨
⎪ = −⎩

 (8)

 
This representation has to be used when a problem involving Sgn-multifunctions is formu-

lated as an LCP in its standard form [20]. In mechanics, relay functions at the velocity level 
are used to represent any kind of dry friction. In turn, when expressed at the displacement 
level, they describe the behavior of pre-stressed springs. More details on this decomposition 
can be found in the work by Glocker [18]. 



Paulo Flores, Remco Leine and Christoph Glocker 

 5

2 SET-VALUED FORCE LAWS FOR FRICTIONAL UNILATERAL CONTACTS 

2.1 Set-valued normal contact law  
In the present work, the normal contact between rigid bodies is characterized by a set-

valued force law called Signorini’s condition [21]. Figure 2 shows two convex rigid bodies 
apart from each other by a relative normal gap or distance denoted by gN. This relative normal 
gap is uniquely defined for convex surfaces, being perpendicular to the tangent planes at the 
contact points 1 and 2. The relative normal gap is non-negative due to impenetrability condi-
tion of the bodies. The two bodies in contact with each other when gN=0. In fact, one of the 
main features of unilateral contact is the impenetrability condition, which means that the can-
didate bodies for contact must not cross the boundaries of antagonist bodies. On the other 
hand, the normal contact force λN is also non-negative because the bodies can not attract each 
other, that is, the constraint is unilateral. The normal contact force vanishes when there is no 
contact, i.e., gN>0, and can only be positive when contact happens, that is, gN=0. Thus, under 
the assumption of impenetrability between the bodies, expressed by gN≥0, only two situations 
can occur, namely, 

 
0 0N Ng λ= ∧ ≥      (closed contact) (9)

 
0 0N Ng λ> ∧ =      (open contact) (10)

 
Equations (9) and (10) represent an inequality complementarity behavior, for which the 

product of the relative normal gap and normal contact force is always zero, that is, 
 

0N Ng λ =  (11)
 
Thus, the relation between the normal gap and normal contact force can be described by, 
 

0Ng ≥ ,     0Nλ ≥ ,     0N Ng λ =  (12)
 

which represents the inequality complementarity condition between gN and λN, the so-called 
Signorini’s condition.  
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Figure 2: (a) Relative normal gap; (b) Normal and tangential contact forces. 

The inequality complementarity behavior of the normal contact law is depicted in Fig. 3(a) 
and shows a set-valued graph or a corner of admissible combinations between gN and λN [22]. 
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When two rigid bodies are contacting, the Signorini’s condition given by Eq. (12) needs to be 
complemented with an impact law, such as the well known Newton’s kinematical law that 
relates the pre- and post-impact velocities to the bodies’ normal coefficient of restitution, εΝ. 

λN

gN

(a)                                                   (b)

λT

γT

μλN

−μλN

λN

gN

(a)                                                   (b)

λT

γT

μλN

−μλN

 
Figure 3: (a) Signorini’s normal contact law; (b) Coulomb’s friction law. 

2.2 Set-valued tangential contact law 
The classical Coulomb’s friction law is another typical example that can be considered as a 

set-valued force law [18, 23]. The Coulomb law states that the sliding friction is proportional 
to the normal force of a contact. The magnitude of the static friction force is less than or equal 
to the maximum static friction force which is also proportional to the normal contact force. 
Furthermore, the sliding force is in opposite direction to the relative velocity of the frictional 
contact [24, 25]. Consider again the two contacting rigid bodies depicted in Fig. 2, in which 
Coulomb friction is present at the contact points 1 and 2. The relative velocity of point 1 with 
respect to point 2 along their tangent plane is denoted by γT. If contact between the two bodies 
takes place, i.e. gN  = 0, then the friction phenomenon imposes a tangential force λT as is illus-
trated in Fig. 2(b). If the bodies are sliding over each other, then the friction force λT has the 
magnitude μλN and acts in the direction opposed to the relative tangential velocity, that is, 

 
( )T N TSgnλ μλ γ− =      0Tγ ≠  (13)

 
where μ is the friction coefficient and λN is the normal contact force. If the relative tangential 
velocity vanishes, i.e. γT = 0, then the bodies purely roll over each other without slip. Pure 
rolling, or no-slip for locally flat objects, is denoted by stick. Thus, if the bodies stick, then 
the friction force must lie in the interval –μλN ≤ λT ≤ μλN. For unidirectional friction, that is 
for planar contact problems, three different scenarios can occur, namely, 

 
0T T Nγ λ μλ= ⇒ ≤      (sticking) (14)

 
0T T Nγ λ μλ< ⇒ = +      (negative sliding) (15)

 
0T T Nγ λ μλ> ⇒ = −      (positive sliding) (16)

 
These three scenarios can be summarized by a set-valued force law as, 
 

( )T N TSgnλ μλ γ− ∈  (17)
 
Figure 3(b) shows the Coulomb’s friction law as a set-valued force law [18]. 
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3 DYNAMICS OF NONSMOOTH RIGD MULTIBODY SYSTEMS 

3.1 Equations of motion  
From classical mechanics, it is well known that the Newton-Euler equations of motion of a 

multibody system with f degrees of freedom and with only frictionless bilateral constraints 
can be written as [26], 

 
=−Mu h 0  (18)

 
=q u      t∀  (19)

 
where ( )= , f ft ×∈M Μ q  is the positive definite and symmetric mass matrix, 

( )= , , ft ∈h h q u  represents the vector of all external and gyroscopic forces acting on the sys-

tem (forces originating from springs and dampers are also included in vector h, ( )= ft ∈q q  

is the f-dimensional vector of generalized coordinates, ( )= ft ∈u u  addresses the system 

generalized velocities and ( )= ft ∈u u  is the vector that contains the system accelerations. 
It is clear that Eq. (18) represents a classical second-order differential equation that de-

scribes the dynamic behavior of a multibody system without any contacts and contact forces. 
Therefore, when a system includes frictional unilateral constraints, the occurring contact 
forces should be taken into account in the equations of motion. In general, the magnitudes of 
the normal and tangential contact forces are added to the equations of motion by using the 
Lagrange multiplier technique [27]. Thus, adding the contact forces to Eq. (18), the dynamic 
equations of motion of a rigid multibody system with normal and tangential contact forces can, 
for non-impulsive motion, be written on the acceleration level as [19, 23], 

 
=N N T T− − −Mu h W λ W λ 0  a.e. (20)

 
=q u      t∀  (21)

 
where ( )= , f n

N N t ×∈W W q  and ( )= , f n
T T t ×∈W W q  gather the generalized normal and tan-

gential force directions wNi and wTi, respectively. The normal and tangential contact forces 
have magnitudes λNi and λTi for each contact point i. The dual variables to the normal contact 
forces λN are the variations of normal gap distances gN, while the dual variables to the gener-
alized friction or tangential forces λT are the variations of the generalized sliding velocities γT. 
The remaining terms of Eq. (20) have the same meaning as described above. It is important to 
note that Eq. (20) requires the existence of the velocities u as well as the existence of accel-
erations u . Motion without impulses implies that λN(t) is (locally) bounded and time-
continuous. The velocities u(t) therefore exist on non-impulsive time-intervals. The friction 
force λT(t) is discontinuous when a slip-stick transition takes place or when the relative slid-
ing velocity of a frictional contact reverses its sign. The acceleration u  is not defined when 
λT(t) is discontinuous. The set of time instances for which λT(t) is discontinuous is of measure 
zero and Eq. (20), therefore, holds for almost all t. 

Impulsive motion is described by the impact equation, 
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( ) =N N T T
+ −− − −M u u W Λ W Λ 0  a.e. (22)

 

0 0

( ) ( ) ( ) ( )( ) lim ,    ( ) lim
t t

t t t t t tt t
t t

+ −

Δ ↓ Δ ↑

+ Δ − + Δ −
= =

Δ Δ
q q q qu u  (23)

 
 
which relates the velocity jump to the impulsive forces NΛ and TΛ  in normal and tangential 
direction respectively. We assume that the velocities u(t) are of locally bounded variation 
(without singular part) and denote ( )t−u  and ( )t+u as the pre- and post-impact velocity re-
spectively. Furthermore, note that finite forces, such as gravity or reaction forces from springs 
and dampers, are non-impulsive, and do not occur in Eq. (22). 

Following  Moreau [28] we will cast the non-impulsive dynamics (20) and the impulsive 
dynamics (22) in a unified description, by using an equality of measures. This constitutes the 
general framework for nonsmooth rigid multibody dynamics [24, 29]. 

Multiplying the equation of motion (20) with the Lebesgue measure dt and the impact 
equation (22) with the atomic measure dη, being the sum of the Dirac point measures at the 
impact times, yields 

 
d d d d =N N T Tt t t t− − −Mu h W λ W λ 0  (24)

 
( )d d d =N N T Tη η η+ −− − −M u u W Λ W Λ 0  (25)

 
Addition of Eqs. (24) and (25) results in, 

 
( ) ( ) ( )d d d d d d d =N N N T T Tt t t tη η η+ −⎡ ⎤+ − − − + − +⎣ ⎦M u u u h W λ Λ W λ Λ 0  (26)

 
or more briefly, 

 
d d d d =N N T Tt− − −M u h W P W P 0  (27)

 
The differential measure for the velocities d d ( )dt η+ −= + −u u u u  consists of the Lebesgue 

measurable part dtu , which accounts for absolutely continuous motion, and the atomic parts 
which accounts for impulsive motion.  Hence, for impact free motion it holds that d dt=u u . 
Similarly, the measure for the so-called percussions corresponds to a Lagrangian multiplier 
which gathers both finite contact forces λ and impulsive contact forces Λ, that is, 
dP=λdt+Λdη [30].  

In the case of non-impulsive motion, all measures dη vanish and a formal division by dt 
yields the classical Newton-Euler equations of motion given by (20). The basic idea of the use 
of equalities of measures in multibody dynamics with unilateral constraints is to treat impul-
sive and non-impulsive dynamics in a unified way, i.e. with a single integration process,  
which opens the possibility to handle both within a single discretisation [20]. 
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3.2 Impact laws 
In this paragraph, the resolution of the equations of motion expressed in the form of the 

equality of measures (27) is briefly presented and discussed in a review manner. The inclu-
sions that are necessary to solve the frictional unilateral contact events in an autonomous mul-
tibody system, based on the Newton’s impact law combined with the Coulomb’s friction law, 
are also stated. In addition, the force laws are related to the systems’ kinematics. The inter-
ested reader in the detail description of this formulation is referred to the work of Moreau [28, 
31] and Glocker [18]. 

Since the impenetrability condition between colliding bodies is required, let us consider a 
MBS with n of frictional unilateral constraints, which can be represented by n inequalities as, 

 
( ), 0Nig t ≥q ,     i=1,…,n (28)

 
where the quantities gNi are the normal gap functions of the frictional contacts. They are for-
mulated such that, gNi>0 indicates an open or positive contact with an Euclidian distance of 
the contact points given by the value of gNi, gNi=0 corresponds to a closed or active contact, 
and gNi<0 indicates the forbidden overlapping or interpenetration between rigid bodies. A rig-
ourous treatment of the definition of these inequalities, within the framework of multibody 
systems formulation, is presented and discussed by Pfeiffer and Glocker [32] and Glocker 
[18]. 

The set of active contacts in the present work is stated as, 
 

( ){ }( ) , 0NiH t i g t= =q  (29)

 
which singles out the contact(s) at which contact-impact forces may occur. 

In order to define the constitutive force laws which relate the contact-impact impulse 
measures to the system’s kinematics q and u, let us first introduce the normal and tangential 
relative velocities at the contacts as [33], 

 
T=Ni Ni Niwγ +w u  (30)
T=Ti Ti Tiwγ +w u  (31)

 
where wNi and wTi represent the generalized normal and tangential force directions, respec-
tively, and Niw  and Tiw  are rheonomic terms [18]. 

The equations of motion (27) can now be complemented with constitutive laws for normal 
and tangential contact-impact forces. In the present study, a unilateral version of the Newton’s 
impact law is considered for the normal direction with local coefficient of restitution 
εNi∈[0,1]. The Coulomb’s friction law is used for the tangential direction with coefficient of 
friction μi, which is complemented by a tangential coefficient of restitution εTi∈[0,1]. For the 
case of a completely elastic contact the coefficient of restitution is equal to unity, while for a 
perfectly inelastic contact the coefficient of restitution assumes the value of zero. 

It is important to note that for the Newton’s impact law, the impact, which causes the sud-
den change in the relative velocity, is accompanied by a normal contact impulse dPN > 0. Sup-
pose that, for any reason, the contact does not participate in the impact, that is, that value of 
the normal contact impulse is zero, although the contact is closed. This situation happens 
normally for multiple contact scenarios. Therefore, for this case, we allow the post- impact 
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relative velocity to be higher than the value prescribed by Newton’s impact law, with the in-
tent to express that the contact is superfluous and could be removed without changing the con-
tact-impact process. Thus, in order to account for these possibilities, two parameters are 
defined as [33], 

 
:Ni Ni Ni Niξ γ ε γ+ −= +  (32)

:Ti Ti Ti Tiξ γ ε γ+ −= +  (33)
 

where ( ) ( )( ), : ,Ni Ti Ni Tiγ γ γ γ+ − ±= u . 
Thus, the normal and tangential impact laws can be stated as two inclusions, 
 

( )d UprNi Niξ− ∈P  (34)

( )d d SgnTi i Ni Tiμ ξ− ∈P P  (35)
 
Finally, the complete description of the dynamics of nonsmooth system, which accounts 

for both impact and impact-free phases, is given by Eqs. (27)-(35). This problem can be 
solved by using the Moreau’s time-stepping method, which is presented and discussed in the 
next section. 

4 MOREAU’S TIME-STEPPING METHOD 

4.1 Time discretization based on the Moreau’s midpoint rule  
The time-stepping methods provide a discrete numerical scheme suitable for the simulation 

of nonsmooth systems [30-35]. These methods are widely used due to their simplicity to im-
plement and their robustness. The time-stepping schemes are based on a time-discretization of 
the system dynamics. The whole set of discretized equations and constraints is used to com-
pute the next state of the motion. Among the various time-stepping methods available in the 
literature, the Moreau’s midpoint method is one of the most popular and is considered in the 
present work [28]. The equality of measures (27) together with the set-valued force laws (34) 
and (35) form a measure differential inclusion which describes the time-evolution of a multi-
body system with discontinuities in the generalized velocities, that is, a nonsmooth dynamical 
system. A general way to solve this mathematical problem consists of applying the Moreau’s 
time-stepping method, which does not make use of the classical equations of motion, which 
relate the accelerations to forces, but considers the equations of motion at the velocity level 
(27). The first step of the Moreau’s approach consists of the time-discretization of the meas-
ure differential equation. Thus, integrating Eq. (27) over a small finite time interval Δt, of 
which initial and end points are denoted by the indices A and E, yields the following terms, 

 
( )d M M E A

tΔ

≈ Δ = −∫ M u M u M u u ,     ( ),M M Mt=M M q  (36)

d M
t

t t
Δ

= Δ ≈ Δ∫ h h h ,     ( ), ,M M A Mt=h h q u  (37)

dN N NM N
tΔ

=∫ W P W P ,     ( ),NM N M Mt=W W q  (38)

dT T TM T
tΔ

=∫ W P W P ,     ( ),TM T M Mt=W W q  (39)
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where tM is the midpoint time instant of the compact time interval [tA, tE] and 
1
2M A A t= + Δq q u  is the midpoint system’s position state. It is clear that the midpoint time in-

stant can be evaluated as, 
 

1
2M At t t= + Δ  (40)

 
Finally, after the above discretization, the equations of motion expressed at the velocity 

level can be written as [20], 
 

( ) =M E A M NM N TM Tt− − Δ − −M u u h W P W P 0  (41)
 

together with the set-valued contact/impact laws, 
 

( ) ( )Upr
NN N N C NNξ ξ− ∈ ⇔ − ∈P P  (42)

( ) ( ) ( )Sgn
T NT N T T TCNμ ξ ξ− ∈ ⇔ − ∈ PP P P  (43)

 
This set of algebraic inclusions can be solved with a linear complementarity problem (LCP) 

formulation of by an augmented Lagrangian approach (ALA) [17]. The velocity uE, at the end 
of time-step tE=tA+Δt, is subsequently calculated by using Eq. (41). Finally, the positions at 
the end of the time step are calculated by, 

 
1
2E M Et= + Δq q u  (44)

 
Note that Eq. (42) applies only to active set-valued force laws, ( )i H t∈ , i.e. set-valued 

force laws that can be described at the velocity level. As friction elements are naturally de-
fined at the velocity level, they are always active and can always be described by (43). Con-
sidering unilateral contacts, Moreau’s midpoint algorithm calculates the contact distances gNi 
of all unilateral contacts at the midpoint qM in order to evaluate whether these are active 
(gNi≤0) or not (gNi>0). Only active unilateral contacts can be described by inclusion (42). Uni-
lateral contacts that are non-active, thus open, are disregarded because it is assumed that their 
contact force contribution is equal to zero. 

Figure 4 shows the flowchart of the general computational strategy, based on the Moreau’s 
time-stepping method, to solve the equations of motion for rigid multibody systems with fric-
tional unilateral constraints, which can be summarized by the following steps: 

(i)  Start the analysis by defining the initial conditions of the problem at hand, namely 
the initial time tA, final time of simulation tF, time step Δt, together with the given 
initial positions qA and velocities uA; 

(ii)  According to the Moreau’s midpoint rule compute the midpoint time instant tM, the 
end time of the interval tE, evaluate the position’s state at the midpoint instants qM, 
assemble the midpoint mass matrix MM and the gyroscopic and external forces vec-
tor hM, and compute the midpoint states of the potential or candidate contact-impact 
points HM; 

(iii) Check for contact-impact between contacting bodies. If there is not any contact-
impact (open contacts), then calculate the velocity at the end time uE, by using Eq. 
(41); otherwise (at least one closed contact) solve the contact problem (for instance 
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by formulating it as a LCP or by using ALA) in order to obtain the impulsive forces 
PN and PT required to compute uE for the contact-impact case; 

(iv) Compute the position’s state at the end time qE , by solving Eq. (44); 

(v) Increment the time step. If the current time is smaller than the intended final simula-
tion time, then update the position and velocity variables and go to step (ii) to pro-
ceed with the process of a new time step; otherwise stop the simulation. 
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STOP
 

Figure 4: Flowchart of the computational procedure for the solution of the equations of motion of constrained 
rigid multibody systems with frictional unilateral constraints. 

4.2 Formulation of the contact-impact problem as an LCP 
In this section, the LCP formulation to solve the contact-impact problem of multibody sys-

tems with frictional unilateral constraints is presented, which closely follows the work by 
Glocker and Studer [20]. In order to set up the LCP, let us first introduce the following matrix 
notation. 

 
( )( ) ,: mat , f i

NM Ni M Mt= ∈W w q ,     i H∈  (45)

( )( ) ,: mat , f i
TM Ti M Mt= ∈W w q ,     i H∈  (46)

( )( ): col , i
NM Ni M Mw t= ∈w q ,     i H∈  (47)

( )( ): col , i
TM Ti M Mw t= ∈w q ,     i H∈  (48)
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( ): col i
N NiP= ∈P ,     i H∈  (49)

( ): col i
T TiP= ∈P ,     i H∈  (50)

( ): col i
NE NEiγ= ∈γ ,    i H∈  (51)

( ): col i
TE TEiγ= ∈γ ,     i H∈  (52)

( ): col i
NA NAiγ= ∈γ ,     i H∈  (53)

( ): col i
TA TAiγ= ∈γ ,     i H∈  (54)

( ): col i
N Niξ= ∈ξ ,     i H∈  (55)

( ): col i
T Tiξ= ∈ξ ,     i H∈  (56)

( ): diag i
N Niε= ∈ε ,     i H∈  (57)

( ): diag i
T Tiε= ∈ε ,     i H∈  (58)

( ): diag i
iμ= ∈μ ,     i H∈  (59)

 
Thus, the contact-impact problem of nonsmooth systems can be summarized by the follow-

ing mathematical relations, 
 

( ) =M E A M NM N TM Tt− − Δ − −M u u h W P W P 0  (60)
T=NE NM E NM+γ W u w  (61)
T=TE TM E TM+γ W u w  (62)
T=NA NM A NM+γ W u w  (63)
T=TA TM A TM+γ W u w  (64)

+N NE N NA=ξ γ ε γ  (65)
+T TE T TA=ξ γ ε γ  (66)

( )UprN N− ∈P ξ  (67)

( )SgnT N T− ∈P μP ξ  (68)
 
The values of γNA and γTA can be evaluated by using Eqs. (63) and (64), respectively, since 

the velocities uA are known at the left endpoint of the time interval. Introducing now Eqs. (61) 
and (7.18) into (65) and (66) yields, 

 
( )T + +N NM E NM N NA=ξ W u w ε γ  (69)

( )T + +T TM E TM T TA=ξ W u w ε γ  (70)
 
Now, it should be mentioned that the inclusions for the contact-impact force laws need to 

be formulated as complementarity conditions. Thus, the unilateral primitive of Eq. (67) results 
in, 

 
( ) TUpr , , 0N N N N N N− ∈ ⇔ ≥ ≥ =P ξ P 0 ξ 0 P ξ  (71)
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In turn, the relay function (68) have to be decomposed into two Upr’s to achieve the de-
sired complementarity conditions. Thus, Eq. (68) yields, 

 

( )
( )
( )

T

T

0, 0, 0

Sgn , s.t. 0, 0, 0
N T R N T R

T N T R L N T L N T L

T R L

⎧ + ≥ ≥ + =
⎪⎪− ∈ ⇔ ∃ − ≥ ≥ − =⎨
⎪ = −⎪⎩

μP P ξ μP P ξ

P μP ξ ξ ξ μP P ξ μP P ξ
ξ ξ ξ

 (72)

 
in which the step height is [-μPN, +μPN]. In addition, to abbreviate the complementarity con-
ditions of Eq. (72) the impulsive friction saturations PR and PL are defined as [18], 

 
:R N T= +P μP P ,     i

R ∈P  (73)

:L N T= −P μP P ,     i
L ∈P  (74)

 
together with 

 
T R L= −ξ ξ ξ ,     , i

R L ∈ξ ξ  (75)
 
Then, the whole set of complementarity conditions of Eq. (72) can be rewritten as, 
 

N N

R R

L L

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟≤ ⊥ ≥⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ξ P
0 ξ P 0

P ξ
 (76)

 
The reason for the special arrangement of PL and ξL in Eq. (76), must be sought in optimi-

zation theory. Without this special arrangement,  one is not able to be set up the LCP formula-
tion without additional matrix inversion processes [18]. Since the variables ξT, PT and uE are 
not included in (28), they have to be eliminated. Thus, combining Eqs. (60) and (73), yields, 

 
( ) ( ) =M E A M NM TM N TM Rt− − Δ − − −M u u h W W μ P W P 0  (77)

 
Substituting now Eq. (75) into Eq. (70) results in, 
 

( )T + +R TM E TM T TA L= +ξ W u w ε γ ξ  (78)
 
The elimination of variable PT can be done through the combination of Eqs. (73) and (74), 

which can be written as, 
 

2L N R= −P μP P  (79)
 
Since the inversion of mass matrix M is always possible, Eq. (77) can be solved for uE 
 

( )1 1 1
E A M M M NM TM N M TM Rt− − −= + Δ + − +u u M h M W W μ P M W P  (80)
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Now, Eqs. (63) and (64) are used to express T
NM AW u  and T

TM AW u  in terms of NAγ  and TAγ , 
 

T =NM A NA NM−W u γ w  (81)
T =TM A TA TM−W u γ w  (82)

 
Introducing Eqs. (80)-(82) into Eqs. (69) and (78), yields. 
 

( ) ( )T 1 T 1 T 1+ +N NM M M NM M NM TM N NM M TM R N NAt− − −= Δ − + +ξ W M h W M W W μ P W M W P I ε γ  (83)

( ) ( )T 1 T 1 T 1+ +R TM M M TM M NM TM N TM M TM R T TA Lt− − −= Δ − + + +ξ W M h W M W W μ P W M W P I ε γ ξ  (84)
 
Thus, Eqs. (83), (84) and (79) can be written in a matrix form as 
 

( )
( )

( )
( )

T 1 T 1 T 1

T 1 T 1 T 1

+
+

2

N NM M NM TM NM M TM N NM M M N NA

R TM M NM TM TM M TM R TM M M T TA

L L

t
t

− − −

− − −

⎛ ⎞ ⎛ ⎞− Δ +⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= − + Δ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

ξ W M W W μ W M W 0 P W M h I ε γ
ξ W M W W μ W M W I P W M h I ε γ
P μ I 0 ξ 0

(85)

 
Equations (85) together with the complementarity conditions (76) form the LCP for the 

contact-impact analysis of multibody systems with frictional unilateral constraints. The di-
mension of this LCP is 3n, where n represents the number of active contacts. The LCP (85) is 
solved in each integration time step. Then, the velocities uE and positions qE for the subse-
quent time steps are obtained from Eqs. (80) and (44), respectively. 

4.3 Computational strategy adopted 
Since the Moreau’s time-stepping method with an LCP formulation involves a good deal 

of mathematical manipulation, it is convenient to summarize the main steps in an appropriate 
algorithm. This algorithm, presented in the flowchart of Fig. 5, is developed under the frame-
work of MBS formulation and can be condensed in the following steps: 

(i)  Specify the initial conditions of the problem at hand, tA, tF, Δt, qA and uA; 

(ii)  Define the geometrical, inertial and material functions, gNi, M, h, εNi, εTi, μi, wNi, 
wTi, Niw  and Tiw ; 

(iii) Compute the midpoint state variables: 

  1
2M At t t= + Δ  

  1
2M A At= + Δq q u  

  ( ),M M Mt=M M q  

  ( ), ,M M A Mt=h h q u  

  ( ),Ni Ni M Mg g t= q  

  ( ){ }, 0M Ni M MH i g t= ≤q  

  ( )lengthi Mn H=  
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(iv) For every Mi H∈  evaluate:  

( )( )mat ,NM Ni M Mt=W w q  

( )( )mat ,TM Ti M Mt=W w q  

( )( )col ,NM Ni M Mw t=w q  

( )( )col ,TM Ti M Mw t=w q  

( )colNA NAiγ=γ  

( )colTA TAiγ=γ  

( )diagN Niε=ε  

( )diagT Tiε=ε  

( )diag iμ=μ  

(v) Set up the LCP in the standard form y=Ax+b; 

  
( )
( )

T 1 T 1

T 1 T 1

2

NM M NM TM NM M TM

TM M NM TM TM M TM

− −

− −

⎛ ⎞−
⎜ ⎟

= −⎜ ⎟
⎜ ⎟−⎝ ⎠

W M W W μ W M W 0
A W M W W μ W M W I

μ I 0
 

  
( )
( )

T 1

T 1

+
+

NM M M N NA

TM M M T TA

t
t

−

−

⎛ ⎞Δ +
⎜ ⎟

= Δ +⎜ ⎟
⎜ ⎟
⎝ ⎠

W M h I ε γ
b W M h I ε γ

0
 

(vi) Solve the LCP using an appropriate algorithm; 

  ( ), LCP( , )=x y A b  

(vii) Split the LCP solution according to: 

  ( )colN i=P x ,     i=1,…,ni 

  ( )colL i=P x ,     i= ni +1,…,2ni 

  ( )colR i=P y ,     i=2ni +1,…,3ni 

(viii) Evaluate the velocity at the end of the integration time step: 

  ( )1 1 1
E A M M M NM TM N M TM Rt− − −= + Δ + − +u u M h M W W μ P M W P  

(ix) Compute the positions at the end of the integration time step: 

  1
2E M Et= + Δq q u  

(x) Increment time step: 

  A At t t= + Δ  
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 (xi) Update system states’ variables qA=qE and uA=uE. Go to step (iii) and proceed with 
the process for the new time step. These steps must be performed until the final time 
of analysis is reached. 

Specify

, , , ,A F A At t tΔ q u

, , , , , , , , ,Ni Ni Ti i Ni Ti Ni Tig w wε ε μM h w w

,A E A E= =q q u u

Define

, , , , , ,M M M M Ni M it g H nq M h

Compute

, , , , , , , ,NM TM NM TM NA TA N TW W w w γ γ ε ε μ

Evaluate

, → = +A b y Ax b

Set up and solve the LCP

, ,N L RP P P

Spilt LCP solutions

( )1 1 1
E A M M M NM TM N M TM Rt− − −= + Δ + − +u u M h M W W μ P M W P

Evaluate

1
2E M Et= + Δq q u

Compute

Increment time

A At t t= + Δ

Update

Specify

, , , ,A F A At t tΔ q u

, , , , , , , , ,Ni Ni Ti i Ni Ti Ni Tig w wε ε μM h w w

,A E A E= =q q u u

Define

, , , , , ,M M M M Ni M it g H nq M h

Compute

, , , , , , , ,NM TM NM TM NA TA N TW W w w γ γ ε ε μ

Evaluate

, → = +A b y Ax b

Set up and solve the LCP

, ,N L RP P P

Spilt LCP solutions

( )1 1 1
E A M M M NM TM N M TM Rt− − −= + Δ + − +u u M h M W W μ P M W P

Evaluate

1
2E M Et= + Δq q u

Compute

Increment time

A At t t= + Δ

Update

 
Figure 5: Flowchart of the Moreau’s time-stepping algorithm with an LCP formulation. 

5 DEMONSTRATIVE APPLICATION TO A SLIDER-CRANK MECHANISM 

5.1 System’s description 
This section deals with the dynamic modeling and analysis of a planar slider-crank mecha-

nism with a translation clearance joint. This multibody mechanical system consists of four 
rigid bodies, which represent the ground, the crank, the connecting rod and the slider. The 
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body numbers and their center of mass are shown in Fig. 6. The ground, the crank, the con-
necting rod and the slider are constrained via ideal revolute joints. The center of mass of each 
body is considered to be located at the mid distance of the bodies’ total length. The transla-
tional clearance joint is composed by a guide and a slider. This joint has a finite clearance, 
which is constant along the length of the slider. 
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Figure 6: Slider-crank mechanism with a translational clearance joint. 

Figure 7 shows a translational clearance joint. The clearance c is defined as the difference 
between the distance of the guide and the slider surfaces. The geometric characteristics of the 
translational clearance joint are the slider length 2a, the slider width 2b, and the distance be-
tween the guide surfaces d. In an ideal translational joint the two bodies translate with respect 
to each other parallel to the line of translation, so that, there is neither rotation between the 
bodies nor a relative translation motion in the direction perpendicular to the axis of the joint. 
The existence of a clearance in a translational joint introduces two extra degrees of freedom. 
Hence, the slider can move ‘freely’ inside the guide limits, until it reaches the guide surfaces. 

Guide

Slider
c

2bd

2a
Guide

Slider
c

2bd

2a

 
Figure 7: Translational joint with clearance that is, the slider and guide. 

The modeling of translational clearance joints is a complex task, due to the several possible 
contact configurations between the slider and guide. Figure 8 illustrates four different scenar-
ios for the slider configuration relative to guide surface, namely: 

(i)  No contact between the two elements: the slider is in free flight motion inside the 
guide; 

(ii)  One corner of the slider is in contact with the guide surface; 

(iii) Two adjacent slider corners are in contact with the guide surface, which implies 
that a face of slider is in contact with the guide surface; 

(iv) Two opposite slider corners are in contact with the guide surface. The conditions 
for switching from one case to another depend on the system’s dynamic response 
as well as on the material colliding properties. 
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Figure 8: Different scenarios for the slider and guide interaction: (a) no contact; (b) one corner in contact with 

the guide; (c) two adjacent corners in contact with guide; (d) two opposite corners in contact with guide. 

5.2 Lagrange’s equations 
In order for the translational clearance joint to be simulated in the multibody system envi-

ronment, is it first required that the system’s equations of motion be derived. In this work the 
Lagrange’s equation of second type is used and it can be written as [36], 

 
d 0
d i i

L L
t

⎛ ⎞∂ ∂
− =⎜ ⎟∂ ∂⎝ ⎠q q

,     i=1,…,f (86)

 
where L is the Lagrangian of the system, that is, the difference between kinetic and potential 
energies, expressed in terms of the generalized coordinates and their time derivatives. The 
equations represented by Eq. (86) are also called as Euler-Lagrange’s equations of motion, 
because although Lagrange was the first to formulate them specifically as the equations of 
motion, they were previously derived by Euler as the conditions under which a point passes 
from one specific place and time to another in such a way that the integral of a given function 
L with respect to time is stationary. 

Since the slider-crank mechanism represented in Fig. 6 has three degrees of freedom, three 
is also the number of generalized coordinates that uniquely represent the system’s configura-
tion. Furthermore, the crank, the connecting rod and the slider have masses mi and moments 
of inertia with respect to the principal central axes perpendicular to the plane of motion Ji, 
where i=1, 2 and 3. Thus, the vector of generalized coordinates and velocities are defined as, 

 
1

2

3

θ
θ
θ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

q  (87)
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1

2

3

ω
ω
ω

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

u ,     with =q u  a.e. (88)

 
Thus, applying the Lagrange’s equation to slider-crank mechanism yields [37], 
 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

M M M h
M M M h
M M M h

θ
θ
θ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (89)

 
in which, 

 
2

11 1 1 2 3 1
1
4

M J m m m l⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

 (90)

( )12 21 2 3 1 2 2 1
1 cos
2

M M m m l l θ θ⎛ ⎞= = + −⎜ ⎟
⎝ ⎠

 (91)

13 31 23 32 0M M M M= = = =  (92)

2
22 2 2 3 2

1
4

M J m m l⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (93)

33 3M J=  (94)

( ) 2
1 2 3 1 2 2 1 2 1 2 3 1 1

1 1sin cos
2 2

h m m l l m m m glθ θ θ θ⎛ ⎞ ⎛ ⎞= + − − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (95)

( ) 2
2 2 3 1 2 2 1 1 2 3 2 2

1 1sin cos
2 2

h m m l l m m glθ θ θ θ⎛ ⎞ ⎛ ⎞= − + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (96)

3 0h =  (97)

5.3 Gap functions 
In order to determine the gap functions let us consider Fig. 9 where a generic position of 

the slider inside the guide is illustrated with the purpose to represent the closed kinematic 
chain of each potential contact point. 
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Figure 9: Generic position of the slider inside the guide where the distance between guide upper and lower sur-

faces is exaggerated for illustration purpose. 
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From analysis of Fig. 9 and considering the system kinematics, the mathematical expres-
sions of the gap functions can be written as [37], 

 

1 1 1 2 2 3 3sin sin sin cos
2N
dg l l a bθ θ θ θ= − − + −  (98)

1 1 1 2 2 3 3cos cos cos sinTg l l a bθ θ θ θ= + − −  (99)

2 1 1 2 2 3 3sin sin sin cos
2N
dg l l a bθ θ θ θ= − − − −  (100)

2 1 1 2 2 3 3cos cos cos sinTg l l a bθ θ θ θ= + + −  (101)

3 1 1 2 2 3 3sin sin sin cos
2N
dg l l a bθ θ θ θ= + + − −  (102)

3 1 1 2 2 3 3cos cos cos sinTg l l a bθ θ θ θ= + − +  (103)

4 1 1 2 2 3 3sin sin sin cos
2N
dg l l a bθ θ θ θ= + + + −  (104)

4 1 1 2 2 3 3cos cos cos sinTg l l a bθ θ θ θ= + + +  (105)
 
Then, the w vectors and of the w  scalars associated with each contact point can be ob-

tained as, 
 

1 1
1

1 2 2

3 3

cos
cos

cos sin

N
N

l
g l

a b

θ
θ

θ θ

−⎛ ⎞
∂ ⎜ ⎟= = −⎜ ⎟∂ ⎜ ⎟+⎝ ⎠

w
q

 (106)

1 1
1

1 2 2

3 3

sin
sin

sin cos

T
T

l
g l

a b

θ
θ

θ θ

−⎛ ⎞
∂ ⎜ ⎟= = −⎜ ⎟∂ ⎜ ⎟−⎝ ⎠

w
q

 (107)

1 1
2

2 2 2

3 3

cos
cos

cos sin

N
N

l
g l

a b

θ
θ

θ θ

−⎛ ⎞
∂ ⎜ ⎟= = −⎜ ⎟∂ ⎜ ⎟− +⎝ ⎠

w
q

 (108)

1 1
2

2 2 2

3 3

sin
sin

sin cos

T
T

l
g l

a b

θ
θ

θ θ

−⎛ ⎞
∂ ⎜ ⎟= = −⎜ ⎟∂ ⎜ ⎟− −⎝ ⎠

w
q

 (109)

1 1
3

3 2 2

3 3

cos
cos

cos sin

N
N

l
g l

a b

θ
θ

θ θ

⎛ ⎞
∂ ⎜ ⎟= = ⎜ ⎟∂ ⎜ ⎟− +⎝ ⎠

w
q

 (110)

1 1
3

3 2 2

3 3

sin
sin

sin cos

T
T

l
g l

a b

θ
θ

θ θ

−⎛ ⎞
∂ ⎜ ⎟= = −⎜ ⎟∂ ⎜ ⎟+⎝ ⎠

w
q

 (111)
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1 1
4

4 2 2

3 3

cos
cos

cos sin

N
N

l
g l

a b

θ
θ

θ θ

⎛ ⎞
∂ ⎜ ⎟= = ⎜ ⎟∂ ⎜ ⎟+⎝ ⎠

w
q

 (112)

1 1
4

4 2 2

3 3

sin
sin

sin cos

T
T

l
g l

a b

θ
θ

θ θ

−⎛ ⎞
∂ ⎜ ⎟= = −⎜ ⎟∂ ⎜ ⎟− +⎝ ⎠

w
q
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5.4 Results and discussion 
The geometrical characteristics, the inertial properties, the force elements, the contact pa-

rameters and the initial conditions necessary to perform the dynamic analysis of the slider-
crank mechanism with a translational clearance joint are listed in Tab. 1. 

 
Geometrical characteristics  l1 = 0.1530 m 

 l2 = 0.3060 m 

 a = 0.0500 m 

 b = 0.0250 m 

 c = 0.0010 m 

Inertial properties m1 = 0.0380 kg 

 m2 = 0.0380 kg 

 m3 = 0.0760 kg 

 J1 = 7.4×10−5 kgm2 

 J2 = 5.9×10−4 kgm2 

 J3 = 2.7×10−6 kgm2 

Force elements g = 9.81 m/s2 

Contact parameters εN1 = εN2 = εN3 = εN4 = 0.4 

 εT1 = εT2 = εT3 = εT4 = 0.0 

 μ1 = μ2 = μ3 = μ4 = 0.01 

Initial conditions θ10 = 0.0 rad 

 θ20 = 0.0 rad 

 θ30 = 0.0 rad 

 ω10 = 150.0 rad/s 

 ω20 = −75.0 rad/s 

 ω30 = 0.0 rad/s 

Table 1: Parameters used in the dynamic simulation of the slider-crank mechanism. 

Figure 10 shows the corners motion in a dimensionless form for two full crank rotations, in 
which the free slider motion and contact-impact events can be observed. Figure 11 illustrates 
the crank speed, the connecting-rod speed and the portraits relative to connecting-rod and 
slider for two complete crank rotations. 
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Figure 10: Dimensionless motion of the slider corners. 
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Figure 11: (a) Crank speed; (b) connecting-rod speed; (c) connecting-rod portrait; (d) Slider portrait. 
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The dimensionless slider trajectories are shown in Fig. 10, where the different types of mo-
tion between the slider and guide observed are associated with the different guide-slider con-
figurations, i.e., no contact, impact followed by rebound and permanent contact between the 
joint elements. The effects of impact between the slider and guide surfaces are also quite visible 
in the plots of Figs. 11b and 11c, namely, one can observe the discontinuities in the connecting-
rod speed. On the other hand, the smooth changes in the speed indicate that the slider and 
guide surfaces are in permanent contact for long periods, as it is illustrated in the slider por-
trait of Fig. 11d. 

It should be highlighted that some numerical difficulties can arise when the clearance size is 
very small, which will lead to the well known drift problem. In these situations, one possible 
way to overcome those difficulties consists of a projection technique, in which the excessive 
penetration between the slider and guide surfaces is eliminated in each time step in order to 
avoid the further interpretation of the bodies. When this scheme is implemented, special atten-
tion should be paid to the conservation of the systems energy, since it can lead to overestimated 
total system energy associated with the contact-impact phenomena. 

6 CONCLUDING REMARKS 
A comprehensive investigation of contact-impact analysis in multibody systems based on 

the nonsmooth dynamics approach was presented in this work. The methodology was based 
on the nonsmooth dynamics approach, in which the interaction of the colliding bodies is mod-
eled with multiple frictional unilateral constraints. The dynamics of rigid multibody systems 
were stated as an equality of measures, which were formulated at the velocity-impulse level. 
The equations of motion were complemented with constitutive laws for the forces and im-
pulses in normal and tangential directions. The formulation of the generalized contact-impact 
kinematics in the normal and tangential directions was performed by obtaining a geometric 
relation for the gaps of the candidate contact points. The gaps were expressed as functions of 
the generalized coordinates. The candidate contact points were modeled as hard contacts, be-
ing the normal and tangential contact laws formulated as set-valued force laws for frictional 
unilateral constraints.  

In this work, the unilateral constraints were described by a set-valued force law of the 
type of Signorini’s condition, while the frictional contacts were characterized by a set-valued 
force law of the type of Coulomb’s law for dry friction. The resulting contact-impact problem 
was formulated and solved as a linear complementarity problem and with the augmented La-
grangian approach, which were embedded in the Moreau’s time-stepping method. Finally, the 
effectiveness of the presented methodologies was demonstrated through the study of the slider 
crank mechanism with a translational clearance joint. The main results obtained from this re-
search work showed that the effect of the contact-impact phenomena can have a predictable 
nonlinear behavior. This nonlinearity aspect is more evident when the system includes friction 
phenomena. With the knowledge of nonlinearities in multibody systems, chaotic behavior 
may be eliminated with suitable design and/or parameter changes of a mechanical system. 
This feature plays a crucial role in the dynamics, design and control of general multibody sys-
tems of common application. 
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