ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

The Tippedisk: A Minimal Model For Friction-Induced Inversion
Simon Sailer, Simon R. Eugster, Remco I. Leine

Institute for Nonlinear Mechanics
University of Stuttgart
Pfaffenwaldring 9, 70569, Germany
[sailer, eugster, leine] @inm.uni-stuttgart.de

ABSTRACT

The tippedisk is a new mechanical-mathematical archetype for friction induced insta-
bility phenomena, showing an inversion similar to the inversion of the tippetop. Un-
like the tippetop, the tippedisk has no rotational symmetry, which greatly complicates
its analysis. Since the system cannot be reduced to a planar one, one has to consider
the full three-dimensional kinematics, being intrinsically nonlinear. In this work a
new minimal model is derived that contains the main relevant physical effects so that
the inversion phenomenon can be described qualitatively. The in-depth analysis leads
to slow-fast systems with homoclinic connections and global bifurcations.
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1 INTRODUCTION

Various gyroscopic systems which are interacting with a horizontal frictional support, such as the
Euler disk [1, 2], the rattleback [3, 4] and the tippetop [5, 6, 7, 8], form a scientific playground for
research in theoretical mechanics. The tippetop [5, 6], as well as the related dynamics of spinning
eggs [9, 10], correspond to a subclass of gyroscopic systems which show inversion phenomena.
The tippetop is a rotationally symmetric top, consisting of a spherical body and a stem attached to
it. The center of gravity (COG) does not coincide with the geometric center, such that the stem
remains pointing upwards as the top rotates slowly in its non-inverted orientation. If the top is
spun fastly around its axis of symmetry, gravitational, normal and friction forces are acting on the
top, such that the top starts to invert its orientation and balances on its stem. This phenomenon
of inversion also occurs for other axisymmetric bodies with rotational symmetry in inertia and
geometry, for example spinning eggs [9, 10, 11]. But what happens if this symmetry does not
exist? In [12], we introduced the "tippedisk” as new archetype of a three-dimensional rigid body
system with frictional contact. The tippedisk can be seen as a thin disk for which the COG does
not coincide with the geometric center. If the tippedisk is spun rapidly around an in-plane axis,
one can observe that the COG rises until the disk remains in an inverted configuration, see Fig. 1.
The inversion phenomenon is therefore not restricted to axisymmetric rigid bodies and also takes
place for the tippedisk. In this work, we derive a minimal model able to describe the inversion
of the tippedisk. A suitable parametrization is introduced, which is able to describe the inversion
phenomenon. The model developed in this work forms the basis for in-depth nonlinear analysis of
the dynamics of the tippedisk, e.g., [13, 14].

2 MECHANICAL MODEL

The mechanical system depicted in Fig. 2 consists of an unbalanced rigid disk with mass m, radius
r, eccentricity e, thickness /. and a flat frictional support. Since we are only interested in the essen-
tial physical phenomena, the contact kinematics is simplified by assuming the disk to be infinitely
thin. According to this approximation, the contact point Cj, i.e., the point with minimal height, lies
on a circle around the geometric center G, in the inclined Il-plane. The vertical projection of the
contact point Cj onto the horizontal support is denoted by D;. Both the disk and the flat support are
considered to be perfectly rigid, so that penetration is not possible. We introduce an orthonormal
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Figure 1: Stroboscopic image sequence showing the inversion phenomenon of the tippedisk. First
Picture: Non-inverted configuration; Last Picture: Tippedisk spinning in its inverted configuration.
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Figure 2: Mechanical model of the tippedisk, showing the definition of the floating G-frame and
the contact points C; and D;.

inertial frame I = (O, e}, ! /) attached to the origin O, where e/ is normal to the flat support. The

right-handed body-fixed B-frame B = (G, e €5 e?) is attached to the geometric center G of the
disk, such that €? is normal to the surface of the disk. The axis e? is defined as the normalized
vector of rgs, which points from the geometric center G to the center of gravity S. The inertia
tensor with respect to G expressed in the body-fixed B-frame is given as g®¢ = diag(A,B,C),
where B < A < C holds. To describe the kinematics of the point C;, we introduce analogue to [15]
a floating coordinate system G = (G, ef,eyG ,e?), which is attached to the geometric center G. Its
unit vector e¢ corresponds to €. Since the cross product e/ x e? is perpendicular to e and eZ, we
define the orthogonal vector

I B
G . ezxez . 1 B 2
el = ———=— th e, xe ||=41/1—R 1

as the horizontal unit vector of the floating coordinate system, where R33 denoted the third diag-
onal element of the rotation matrix R given below. The symbol ||.|| denotes the Euclidean norm.
Definition (1) is only valid for non-horizontal configurations with R33 # 1. For horizontal config-
urations, note that €% can not be determined uniquely. If R33 # 1, we can obtain with

G._ By ol
e :=e’ xe @)

a right handed orthonormal frame, such that the floating coordinate frame G = (G,eg,e§,ezc) is

fully defined. The point C; with minimal height can be described with respect to the geometric
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Figure 3: Dimensions of the tippedisk.

center G as
G
rGCl = —rey . (3)

The distance between the contact point C; and the flat support defines the signed gap gy
gv =Toc, "€ = (rog +rsc,) - €, (4)
which is equal to the projection of roc, onto the eg-axis.

3 DIMENSIONS

In the following we consider a stainless steel disk, which is depicted in Fig. 3. The dimensions and
mass properties are given in Table 1, for a detailed derivation of the principal moments of inertia,
we refer to [12].

Table 1: Dimensions and mass properties of the tippedisk.

Property Parameter | Magnitude | Unit
Disk radius r 0.045 m
Hole radius a 0.015 m

Distance b 0.02 m

Disk thickness h 0.01 m

Eccentricity e 251073 m

Mass m 0.435 kg
30c(1,1) A 0.249-1073 | kg m?
306(2,2) B 0.227-1073 | kg m?
30 (3,3) C 0.468-1073 | kg m?

4 KINEMATICS

We parametrize the orientation of the tippedisk using Euler angles ¢ = [a, 8, y]T. Therefore,
the rotating R-frame with eX = e/, ef = cosael + sinae§ and e§ = ef x e® is introduced. The
sequence of rotation is then given as the first rotation with angle ¢ around the e!-axis, the second
rotation with angle 8 around the ef-axis and the third rotation with angle y around the ef—axis
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with corresponding elemental rotations

co —so O 1 0 0 cy —sy O
Ar=|sa ca O|,Arpg= |0 cB —sB|andAgg= |sy cy O], (5)
0 0 1 0 sB cp 0 0 1

where the abbreviations so = sin(a), co. = cos(a) etc. have been used. The rotation matrix

cacy—sacfsy —casy—sacfcy sasP
R(@) = |sacy+cacfsy —sasy+cacfcy —casf|, (6)
sPsy sBey cp

which per se fulfills the orthogonality condition RTR = I, then describes the relative orientation
of the body-fixed B-frame with respect to the inertial /-frame.! The angular velocity Q of the
tippedisk expressed in the body-fixed B-frame yields

. asPsy+ [3_0}/
Q=0 AL, reR + BAL, el +yel = | asBey—Bsy| (7)
ocf+7y
where the transformation matrix Agzp = ArgAgg has been used. The transformation
p
RQ=ApppQ = | —7sf 8)
o+ ycp

yields the angular velocity of the tippedisk expressed in the rotating R-frame. The relative angular

velocity of the R-frame is given with respect to the I-frame as g@;z = [0, 0, &]". Using coordinates
x, y and z, the position of the geometric center G in the rotating R-frame is defined as

X
RYoG = |y | - )
Z
The corresponding velocity
X 0 X X—yo
rVG= Y|+ |0 | X [y| = [y+x& (10)
Z o Z Z

is obtained, using Euler’s rule of differentiation gvg = (groG) + r®@1r X rY oG- Introducing the set
of coordinates q = [x, y, z, &, f3, }/]T € RY, the Jacobian matrices of rotation Jz and translation J;
are obtained with (7) and (10) as

000 sBsy cy O 100 —y 00

Q2 P)

pIe=5"=10 0 0 sBey —sy 0| ,xlg= SV,G:010+x00. (1)
9 Jlooo ¢ 0 1 49 Jloo1 o000

The relative position of the center of gravity S with respect to the geometric center G is given as

rgs = ee5, using the eccentric distance e. For reasons of notation, the bijective map

a) 0 —as ar
ji RPSR¥: a=|g|—a=| a3 0 —af, 12)
as —aj a) 0

is introduced, such that the cross product a X b can be written as matrix product of ab.

The rotation matrix R becomes singular for § = 0 and 8 = m. However, the following simulation results show that
the inversion of the tippedisk is far from singularity, which proves the validity of this parameterization.
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S KINETICS

The virtual work [16, 12] of a single rigid body is given coordinate free as
SW — org| ([ ml mig| [ag]  [-mQx (Qxrgs)|  [Fg (13)
- 6¢ migs Og ¥ —Qx (®G Q) Meé(t '
According to Eq. (9) the geometric center G is parameterized with respect to the rotating R-frame?.
Since the inertia tensor in the body-fixed B-frame @ is constant, it is convenient to express the

angular velocity Q and the angular acceleration ¥ with respect to the body-fixed B-frame, so that
the virtual work Eq. (13) expressed in mixed R- and B-coordinates reads as

SW — |:R5I‘G]T <[ ml me‘;F;SARB:| [Rag] B [—mRQ X (RQ % RrGS):|> _swet (14)

OO mpFosAky BO¢ B¥ — QX (3O; Q)
where T
61. Fext
W = §qT = ¥ G] [R G ] 15
q [B5¢ M (1)

denotes the virtual work of external forces an torques caused by force elements or contact forces.
The introduced kinematics from Eq. (9), induces the variation of the geometric center as

rOrG =rJGOQq. (16)
Together with the dq-induced variation of the orientation
869 = pJrdq, (17)

the virtual work (induced by the variation of coordinates §q) yields

Jol' m1 MREL A a —mgQ X (rRQ X gres)
6W — 6 T |R G:| . (|: . RYGs RB:| |:R G:| o |: R R R —6WeXt,
q |:BJR mpFGsAfg 89¢ ¥ —3Q x (30 Q)

from which the equation of motion can be extracted as

BJIr mpFGsAfg 89c ¥ —3Q % (3O Q) '

Inserting the introduced kinematics in Eq. (19) yields an equation of the form
M(q)d —h(q,q) =~ (20)

with symmetric mass matrix

M;; Mp;
M(q) = [sym. sz ) (21)

(m 0 0

M11: 0 m O 5 (22)
10 0 m
(M 11 : sym.

My, = M22712 ACZ’}’—FBSZ}/ . s (23)
| M213 0 C
[—my — mecBsy 0 —mesy

M= | mx+mecy  —mesfsy mecBcy|, (24)
i 0 mecf3sy mesPcy

2In [12] there is a typo in Eq. (2.36), since with jap the acceleration of the geometric center must correspond to jag.
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My 11 = m(x2 —i—y2) + 2me(xcy+ ycPsy) + (Aszy—i- Bczy)szﬁ +C02[3, (25)

M) 12 = (A — B)sBsycy —mexsfsy, (26)
M>) 13 = mexcfcy+ meysy+Ccf, (27)
and vector of gyroscopic forces
h(q,a):=[m h hy ha hs he]', (28)
hi =m[x0* 4 2y¢] +me[ (0 + 7 )cy — 2aBsPsy+2aycfey], (29)
hy =m[y6* = 2i6) +me (6 + B? + 7)esy+ 20757+ 2B ysBe] (30)
hy =me|B*ssy+VsPsy—2Byepey], (31)

hy = —2m|xxd + yya|
— me[2tacy+ (20 —xB? —x7?)cBsy
—2xaysy —2xBysPey+ yyPey — 2y BsBsy+ 2ya)'/cﬁcy]
— (A= B)[B*cPsycy+2a7s*Bsyey + BisB(c*y —s77)]

—2(As*>y+Bc?y—C)aBsBc +CBysB, (32)
hs =me[2x¢t —y&*|sPsy+ (A —B) [2[3 7sycy— aysB(cty—sy)]

+ (As?y+ Bc*y)a®sBef — C[azsﬁcﬁ + aysB], (33)
he = —me [2)')()6 +x(§c2] SY—me [2)6()5 —y('xz] cBcey

+(A—B)[(6*s*B — B*)sycy+ af(cPy—s*y)sB] +CaBsp. (34)

For a shorter notation, the abbreviations cy = cos ¥ and ¢y = cos? y are used. As the points C; and
S are not directly paramerterized, the rigid body formula gvp = gvg 4+ rQ X grgp is used to obtain
the Jacobian gJp = rJG — rFGp rJR Of an arbitrary body point P, where Jacobian gJr = AgppJr
holds. The right hand side of Eq. (20) contains the generalized gravitational force

fo = —mgrJs"rel = —mg (rJG — rEGs RIR) T REY
= —mg [O 0 1 0 ecBsy esﬁc}/]T, (35)

the normal and tangential generalized contact forces wyAy and W7 A7 with generalized force
directions

wy = rdc, "reX = (rJG — rEGe, rRIR) TREY
=001 0 —rcpg 0], (36)
Wi =gl " [ref  rel] = (rJo—rFGe,rIR)" (RS ref]

|1 0 0 ref—y o |’

010 x —rsf 0 37

and writes as ' = f5 +wyAy + W7 A 7. The contact point C; does not detach during the inversion
of the tippedisk, see [12]. This motivates the bilateral constraint gy = 0, which forces the gap from
Eq. (4) to zero. The application of the bilateral constraint on position level leads to a system of
differential algebraic equations (DAE) with index three. This index can be reduced by formulating
the bilateral constraint on acceleration level

fort=0 gy(0)=gn(0)=0,fort>0 gy=wry{+wyq=0. (38)

In this case the scalar normal force Ay takes the role of a Lagrange multiplier, which forces the
constraint to be fulfilled. In [12] it is shown that smooth Coulomb friction

Yr

Ar=pdy—T
TNy e

(39

42



with the friction coefficient ¢t and the smoothing parameter € is sufficient to describe the inversion
phenomenon qualitatively. The kinematic quantity ¥, describes the relative slip velocity between
the associated contact points C; and D; with respect to the rotating R-frame and is defined as

yTX:| _ |:Re§ : (RJCI q):| . (40)

Y= [YTy &€} - (rJc, @)

Moreover, we mention that the friction force A7 here depends linearly on the normal contact
force Ay and therefore directly on the Lagrange multiplier Ay of the bilateral constraint. The
smoothing is hereby motivated, as set-valued Coulomb-Contensou friction couples drilling and
tangential friction [17]. If the macroscopic contact point experiences a spinning velocity, then
from a microscopic point of view the associated contact area is forced to be in slip state. As the
tippedisk is always spinning during inversion, the contact point C; slips permanently, such that
smooth Coulomb friction is justified.

6 SIMULATION

Introducing the trivial kinematic relation q = u, which is combined with the equation of motion
from Eq. (20) and the bilateral constraint on acceleration level gy(7) = 0, considering smooth
coulomb friction, the system

I 0 0 q u
0 M —Wyr| |u|=|h+fs], 41)
0 wy, 0 Ay —wiq

A

with Wyr := wy — IJWTH—Y‘% is obtained. Equation (41) corresponds to an linear equation
system (with invertible A-matrix) such that it is possible to derive a first order ordinary differential
equation (ODE) in generalized coordinates q and velocities u. This ODE can be solved with any
standard integrator, e.g., a four staged Runge-Kutta method. At this point we restrict us to the

integrator odel5s from MATLAB. For a more detailed derivation, we refer to [12].

6.1 Initial conditions and model parameters

In this section, the results of numerical simulations using the derived minimal model are discussed.
As shown in Figure 4, the tippedisk is called not inverted when B = 7 and y = —Z holds. In this
configuration the center of gravity S lies below the geometric center G. Vice versa, we call the
disk inverted if B = 7 and y = 7, i.e., the center of gravity § lies above the geometric center
G. Due to the periodicity of the trigonometric functions sine and cosine these definitions are not
unique, since for B = —Z and y = 7 the tippedisk is also in a inverted configuration. However,
the following numerical results show that f3 is in the range of (0,7) during the inversion, so this

ambiguity does not matter.

not inverted inverted
B=+3 B=+3
O Y=-3 7=+3
Gis—>ef
ey
N C1N

Figure 4: Non-inverted and inverted configuration of the tippedisk.
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The initial conditions, at time 7o = O's, are given in Table 2. The end time of the simulation is set to
t; = 5s. According to Table 2, the disk rotates initially with closed contact point in non-inverted
orientation without slippage, i.e., ||¥r|| = 0. For the following simulations, the friction coefficient
u = 0.3 and smoothing parameter € = 0.1 are chosen.

Table 2: Initial condition: Perturbed non-inverted spinning with closed contact.

Coordinate | Magnitude | Unit | Velocity Magnitude Unit
X0 0 m X0 0 m/s
Yo 0 m Yo 0 m/s
20 0.045 m 20 0 m/s
o 0 rad [0y 40 rad/s
Bo 0.57 rad Bo 0 rad/s
1o —0.57+0.1 | rad 70 —o0pcos(fo) =0 | rad/s

6.2 Simulation results

The numerical results of the system from Eq. (41), assuming smooth Coulomb friction Eq. (39)
and initial conditions from Table 2 are shown in color in Figure 5. For comparison, the results
of the quaternion-based model from [12], which assumes unilateral contact and smooth Coulomb
friction, are shown in black (dotted/dashed). At ¢ = Os, the tippedisk is almost in the non-inverted
configuration, as § = +7 and y = —Z +0.1 holds. Starting from this, the angle y increases quickly
from —7 and ends in an asymptotic oscillation around +-7. During this first stage of motion the
inclination angle B does only change slightly, such that the inversion of the tippedisk can be
directly related to the change of the angle y. Both angles 8 and 7 are increasingly superimposed
by small oscillations with higher frequency. In the zg-graph, the height of the center of gravity S
is shown, growing from r — e to r + e, which also indicates that the disk ends up in an inverted
configuration with closed contact. During this inversion process, the kinetic energy Eyi, decreases
while the potential energy E increases, such that the total energy Ey, dissipates from 0.38 Nm to
0.36 Nm for ¢ < 0.5s. After this initial fast decay, the total energy slowly decreases as the tippedisk
rotates near the inverted stationary solution. In the considered time interval, the rotation angle o
increases almost linearly. The associated spinning velocity & initially increases as the height zg of
the center of gravity drops, followed by a saturating decrease on an ‘intermediate’ timescale. The
long-term behavior is characterized by a slow decrease of the spinning velocity &.
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Figure 5: Simulation results showing the inversion of the tippedisk. The corresponding initial
conditions are given in Table 2.

7 DISCUSSION

The simulation results from Fig. 5 show that the derived model with smooth Coulomb friction
and a bilateral constrained contact point is able to describe the inversion behavior of the tippedisk.
Comparison with the quaternion-based time stepping model proves that both models lead to the
same results (with respect to numerical error), which shows the correctness of the new minimal
model for the inversion phenomenon. As the Change of the spinning velocity ¢ is relatively small,
the associated rotation angle o depends almost linearly on time ¢, i.e., & is approximately given
as o/(t) ~ Qr with constant spinning velocity Q. At this point, the derivation of the new minimal
model seems artificial, since other models from [12] already describe the inversion phenomenon
of the tippedisk correctly and even lead to the exactly same results, cf. Fig. 5. However, to
characterize the stability of the inverted and non-inverted stationary solutions, it is convenient
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to linearize the equations of motion around 8 = +7 and y = £%. A given parametrization of
the geometric center G (or center of gravity S) with respect to the inertial frame / yields system
equations that depend explicitly on the angle a, see [12]. As a(t) is a function in time ¢, the
linearized system matrices are time dependent, therefore Lypunov’s indirect method can not be
applied and Floquet theory must be used, which greatly complicates the closed form analysis. In
this work, we have introduced a new parametrization of the geometric center G with respect to the
rotating R-frame, which led to system equations that do not explicitly depend on ¢ and thus do not
depend on time ¢. This has the advantage that the linearized system matrices are constant and thus
Lyapunov’s indirect method can be applied to study the local stability behavior.

8 CONCLUSIONS

The tippedisk introduced in [12] serves as a link between analytical mechanics, theoretical me-
chanics and nonlinear dynamics. Our aim is to understand the nonlinear behavior behind the
inversion phenomenon of the tippedisk. Therefore, a mathematical description is sought that will
form the basis for future stability analyses of the nonlinear system. Depending on the parametriza-
tion, the system equations vary in their suitability for dynamic analysis. In this work, we have
introduced a new minimal model of the tippedisk, which qualitatively describes the inversion phe-
nomenon and has some advantages for future dynamical considerations, such as constant system
matrices for the linearization around the inverted and non-inverted configurations. Based on the
parametrization presented here, [13] applies Lyapunov’s indirect method to obtain a closed-form
expression for the critical spinning velocity Q. above which the inverted spinning solution be-
comes stable. Moreover, the linear stability analysis indicates different timescales, suggesting
slow-fast dynamical behavior. By analyzing this singularly perturbed structure, the complexity
and order of the model can be reduced to obtain a lower dimensional dynamical system that de-
scribes the inversion phenomenon of the tippedisk, cf. [13, 14].
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