
Received: 15 February 2021 Revised: 28 July 2021 Accepted: 30 July 2021

DOI: 10.1002/nme.6801

R E S E A R C H A R T I C L E

A nonsmooth generalized-alpha method for mechanical
systems with frictional contact

Giuseppe Capobianco Jonas Harsch Simon R. Eugster Remco I. Leine

Institute for Nonlinear Mechanics,
University of Stuttgart, Stuttgart, Germany

Correspondence
Giuseppe Capobianco, Institute for
Nonlinear Mechanics, University of
Stuttgart, Pfaffenwaldring 9, 70569
Stuttgart, Germany.
Email: capobianco@inm.uni-stuttgart.de

Abstract
In this article, the existing nonsmooth generalized-𝛼 method for the simulation
of mechanical systems with frictionless contacts, modeled as unilateral con-
straints, is extended to systems with frictional contacts. On that account, we
complement the unilateral constraints with set-valued Coulomb-type friction
laws. Moreover, we devise a set of benchmark systems, which can be used to vali-
date numerical schemes for mechanical systems with frictional contacts. Finally,
this set of benchmarks is used to numerically assert the properties striven for
during the derivation of the presented scheme. Specifically, we show that the
presented scheme can reproduce the dynamics of the frictional contact ade-
quately and no numerical penetration of the contacting bodies arises—a big
issue for most popular time-stepping schemes such as the one of Moreau. More-
over, we demonstrate that the presented scheme performs well for multibody
systems containing flexible parts and that it allows general parametrizations
such as the use of unit quaternions for the rotation of rigid bodies.
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1 INTRODUCTION

In this article, we derive a nonsmooth generalized-𝛼 method for the simulation of mechanical systems with frictional
contact. Moreover, we introduce a set of benchmark systems to validate the presented scheme.

In many engineering applications, systems are modeled through rigid and flexible bodies, which are interconnected by
joints and can come into contact with each other or their surroundings. Prominent examples are automotive and robotic
systems. The dynamics of mechanical systems with frictional contact can be described within the theory of nonsmooth
mechanics,1,2 where the velocities of the system are allowed to jump. This is particularly important for the description of
contact between rigid bodies, where at the time instant when the contacting bodies touch, an impact might occur, which
due to rigidity instantaneously changes the velocity of the body.

For the simulation of nonsmooth mechanical systems, two approaches can be distinguished, the event-driven and
the event-capturing schemes. The event-driven schemes use standard ordinary differential equations (ODE) solvers,
or differential algebraic equations (DAE) solvers, to compute the impact-free motion. Every time an impact event
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is detected, the algebraic impact equations are solved to find the postimpact velocities, which are then used to
continue the integration with the ODE solver. The main strength of event-driven integration is that ODE solvers with
high-order accuracy can be used. However, since every impact is resolved, these schemes are not suitable to find
motions with accumulation points, that is, motions with an infinite number of impacts occurring in a finite interval of
time.

In contrast to event-driven schemes, the event-capturing schemes, also called time-stepping schemes, can overcome
accumulation points, because they smear the effects of impacts over a time step. However, the most widespread schemes,
such as Moreau’s time-stepping scheme1 and variants thereof, are of first-order accuracy, show a high level of numerical
dissipation and allow penetration of the contacting bodies. These properties are problematic, especially for the simu-
lation of mechanical systems containing elastic parts. Several publications present improved event-capturing schemes
by addressing at least one of these drawbacks. In References 3,4, integrators similar to Moreau’s time-stepping scheme
with improved long-term energy behavior have been derived. To arrive at event-capturing schemes with higher accuracy
order for the impact-free motion, Reference 5 combines high-order Runge–Kutta methods with Moreau’s time-stepping
scheme, Reference 6 relies on extrapolation methods, and Reference 7 uses a discontinuous Galerkin method to discretize
the dynamics of the mechanical system. The constraint drift, which is also responsible for contact penetration, is generally
solved by a stabilization in the sense of Gear–Gupta–Leimkuhler (GGL)8 and/or a projection approach, see, for example,
References 9,10.

In References 11-14, the nonsmooth generalized-𝛼 methods were introduced, which alleviate many of the problems
of the Moreau-type time-stepping schemes. In particular, the generalized-𝛼 schemes are second-order accurate for the
impact-free motion, use the GGL stabilization to avoid penetration of the contacting bodies and it is known from structural
mechanics applications, see References 15-17, that generalized-𝛼 schemes perform well for flexible multibody systems.
However, the nonsmooth generalized-𝛼 methods of References 11-14 are only applicable to multibody systems with fric-
tionless contacts, that is, unilateral constraints without Coulomb friction. Furthermore, these nonsmooth generalized-𝛼
methods are restricted to mechanical systems for which the velocity of the system corresponds to the time derivative
of the position coordinates. In References 18,19, the schemes of References 11-14 have been extended to cope with
systems with frictional contact and a more general kinematic equation. In Reference 18, the augmented Lagrangian
approach together with discrete set-valued Coulomb friction laws on position and velocity level have been used to arrive
at a nonsmooth generalized-𝛼 scheme, which can describe systems with frictional contact. The scheme of Reference
18 has been extended in Reference 19 to allow for different rotation parametrizations for rigid bodies. This represents
a particular case of a general kinematic equation since the angular velocity is not the time derivative of the rotation
matrix describing the orientation of a rigid body. The nonsmooth generalized-𝛼 methods of References 11-14,18,19 are
derived from a splitting strategy, where the motion is artificially split into a nonsmooth and a smooth part. Further-
more, the contact laws describing the impenetrability of the contacting bodies (Signorini condition) as well as the impact
between these bodies (Newton’s impact law) are introduced either as inequality complementarity conditions or equiv-
alently as normal cone inclusions. The discrete counterparts of the contact laws are given as an active set formulation,
that is, depending on the state of the system, conditions are established that decide which set of nonlinear equations
describes the contact. This set of nonlinear equations is finally solved by a semismooth Newton method in every time
step.

In nonsmooth mechanics, the set-valued Coulomb friction law is naturally stated as a force law on velocity level.
Since in the case of sticking this friction law acts like a bilateral constraint, it can be brought to acceleration level through
differentiation. Similar to References 18,19, it is the aim of this article to extend the nonsmooth generalized-𝛼 schemes11-14

to account for friction as well as a general kinematic equation. However, the explained link between the friction law on
velocity and acceleration level will be exploited instead of formulating the discrete friction laws on position and velocity
level as done in References 18,19.

We use the same generalized-𝛼 time discretization for the dynamics of the mechanical system as the schemes of
References 11-14, but include the general kinematic equation. In doing so, the presented scheme shares the beneficial
properties of the existing generalized-𝛼 schemes, such as the second-order accuracy and the absence of numerical contact
penetration. To account for friction, we invoke set-valued Coulomb-type friction laws introduced as normal cone inclu-
sions. We exploit the fact that also the Signorini condition and Newton’s impact law can be formulated as normal cone
inclusions, such that the contact laws are given as a set of normal cone inclusions. We directly discretize these contact
laws to arrive at their discrete counterparts, which are again a set of normal cone inclusions. This opens the possibil-
ity to numerically solve the time step using any strategy suitable for the solution of normal cone inclusion problems,
see, for example, Reference 20. We present two such strategies, which both rely on a reformulation of the normal cone
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inclusion invoking the proximal point function to arrive at implicit nonlinear equations. For the first strategy, the proxi-
mal point function is used to achieve an active set formulation of the contact laws, which are then solved by a semismooth
Newton method. The second strategy solves the nonlinear equations including the proximal point functions with fixed
point iterations. Finally, we introduce a set of benchmark systems, which can be used to validate numerical schemes
for mechanical systems with frictional contacts. Therefore, we devise the systems in such a way, that each benchmark
can be used to test the performance of the scheme with respect to a specific feature. These are overcoming accumula-
tion points, slip-stick transitions, handling the presence of linearly dependent force directions, contact penetration, the
Painlevé paradox, the suitability of the scheme for the simulation of flexible multibody systems, combined spatial friction
laws and general kinematic equations. We use these benchmark systems, to validate the performance of the presented
scheme.

The mathematical concepts used for the discretization of the contact laws as well as their numerical treatment
is presented in Section 2. In Section 3, the equations of motion of a mechanical system subjected to ideal bilateral
constraints as well as frictional contacts are established. To avoid that the resulting generalized-𝛼 scheme exhibits
numerical constraint drift, and hence penetration of the contacting bodies, a constraint stabilization in the sense of
Gear–Gupta–Leimkuhler is introduced in Section 4. Subsequently, the generalized-𝛼 discretization of the dynamics is
presented in Section 5, the contact laws in normal direction of the contacting surfaces of the bodies are discretized
in Section 6 and the discretization of the friction laws is conducted in Section 7. The extension to general relations
between velocities and position is discussed in Section 8. The reformulation of the discrete contact laws as nonlinear
equations and how these are solved with a semismooth Newton method or fixed point iterations is shown in Section 9.
Finally, a set of mechanical benchmark systems is used to validate the derived nonsmooth generalized-𝛼 scheme in
Section 10.

2 MATHEMATICAL PRELIMINARIES

2.1 Convex sets and cones

A set C ⊆ Rn is convex if and only if 𝛼 a + (1 − 𝛼)b ∈ C for all a,b ∈ C and for all 𝛼 ∈ [0, 1]. For 𝜆 ∈ R, we introduce the
scalar multiple of a set C ⊆ Rn as 𝜆C = {𝜆x |x ∈ C}. If C is convex then it holds that

x1 ∈ 𝛼1C, x2 ∈ 𝛼2C ⇒ x1 + x2 ∈ (𝛼1 + 𝛼2)C (1)

for 𝛼1, 𝛼2 ≥ 0. More generally, it holds for a closed convex set C that

xi ∈ 𝛼i C, i = 1, 2, 3, … ⇒
∑

i
xi ∈

(∑
i

𝛼i

)
C, (2)

where 𝛼i ≥ 0.
Let K ⊆ Rn be a cone, that is, the set K fulfills the cone property

a ∈ K ⇒ 𝛼 a ∈ K ∀𝛼 > 0. (3)

For a closed cone K it holds that when a ∈ K also 𝛼 a ∈ K for all 𝛼 ≥ 0. Moreover, if K is a closed convex cone, then it
holds that

ai ∈ K, i = 1, 2, 3, … ⇒
∑

i
ai ∈ K, (4)

and, likewise,

a(t) ∈ K ∀t ∈ I ⇒ ∫I
a(t) dt ∈ K, (5)

where I ⊆ R and the Lebesgue measure dt may be generalized to any positive measure.
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2.2 Properties of normal cones

Let C ⊆ Rn be a closed convex nonempty set. The normal cone of C at x ∈ C is defined as

C(x) = {y ∈ C | yT(x∗ − x) ≤ 0,∀x∗ ∈ C}, (6)

whereas C(x) is empty if x ∉ C. One can show that the normal cone C(x) is a closed convex cone, see Reference 21.
It can easily be verified, that C(x) = {0} if x is an interior point of the set C. Indeed, for an interior point x there exists
a ball around x contained in C. This allows to choose x∗ from this ball such that any direction x∗ − x can be produced
in (6), which leaves only y = 0 to fulfill the inequality.

The normal cone has a number of less known scaling properties needed in this article. These may conveniently be
proved using topics from convex analysis such as the subdifferential and the support function. However, here we will try
to introduce as little machinery as possible and derive these properties by using only the definition (6).

Proposition 1. Let 𝛼 > 0 and C be a closed convex nonempty set. It then holds that

y ∈ 𝛼C(x) ⇔ y ∈ C

( 1
𝛼

x
)
. (7)

Proof. Consider x ∈ 𝛼C. The definition (6) applied on the inclusion y ∈ 𝛼C(x) implies that yT(x∗ − x) ≤ 0,∀x∗ ∈ 𝛼C.
We divide by 𝛼 > 0 giving

yT
( 1
𝛼

x∗ − 1
𝛼

x
) ≤ 0 ∀ 1

𝛼
x∗ ∈ C ⇔ y ∈ C

( 1
𝛼

x
)
. (8)

Furthermore, x ∉ 𝛼C implies 𝛼C(x) = ∅, which in turn yields C

(
1
𝛼

x
)
= ∅. The other direction of the implication

follows by taking the reciprocal value of 𝛼. ▪

Proposition 2. Let C be a closed convex nonempty set and C(𝛼) = 𝛼C for all 𝛼 ≥ 0. If

y ∈ C(𝛼i)(xi), i = 1, 2, 3 … , (9)

where 𝛼i ≥ 0, then it holds that

y ∈ 
C
(∑

i
𝛼i

)
(∑

i
xi

)
. (10)

Proof. Retaining the case 𝛼i = 0 for the end of the proof, we first consider 𝛼i > 0 for all i. By using Proposition 1 together
with the homogeneity C(𝛼) = 𝛼C(1) = 𝛼C we infer from y ∈ C(𝛼i)(xi), that

y ∈ C

(
1
𝛼i

xi

)
, i = 1, 2, 3 … . (11)

Without loss of generality, consider i = 1, 2 and use the definition (6) for either, that is,

yT
(

1
𝛼1

x∗
1 −

1
𝛼1

x1

)
≤ 0 ∀ 1

𝛼1
x∗

1 ∈ C (12)

yT
(

1
𝛼2

x∗
2 −

1
𝛼2

x2

)
≤ 0 ∀ 1

𝛼2
x∗

2 ∈ C. (13)

We now sum the inequalities, but multiply by 𝛼1 and 𝛼2 respectively to arrive at

yT(x∗
1 + x∗

2 − x1 − x2) ≤ 0 ∀x∗ = x∗
1 + x∗

2 ∈ (𝛼1 + 𝛼2)C, (14)

where we used property (1) of a convex set C. Repeated summation gives

yT

(∑
i

x∗
i −

∑
i

xi

)
≤ 0 ∀x∗ =

∑
i

x∗
i ∈

(∑
i

𝛼i

)
C = C

(∑
i

𝛼i

)
, (15)
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which is equivalent to

y ∈ 
C
(∑

i
𝛼i

)
(∑

i
xi

)
. (16)

If 𝛼i = 0 for some i, then it holds that C(𝛼i) = C(0) = {0} and xi = 0, whereas {0}(0) = Rn. One easily verifies that
the proposition still holds. ▪

Proposition 2 may also be written in integral form as

y ∈ C(𝛼(t)) (x(t)) ∀t ∈ I ⊆ R ⇒ y ∈ C(∫I 𝛼(t)dt)

(
∫I

x(t) dt
)
, (17)

where 𝛼(t) ≥ 0 and where y is a fixed value, that is, does not depend on t.

2.3 Reformulations and numerical solution of normal cone inclusion problems

The generalized-𝛼 discretization of the dynamics of mechanical systems with frictional contacts results in a normal cone
inclusion problem, that is, a set of nonlinear equations and normal cone inclusions, describing a time step of the scheme.
Hence, finding a numerical solution to a time step of the presented scheme in essence corresponds to finding a numerical
solution to

y ∈ C(−z) with Rs(y, z) = 0, (18)

where Rs ∶ Rn × Rn → Rn is an implicit relationship between y and z. An extensive collection of solutions strategies for
(18) can be found in Reference 20. In what follows, we limit ourselves to two strategies based on the reformulation of the
normal cone inclusion as an equation including the proximal point function.

For a closed convex nonempty set C ⊆ Rn, we define the proximal point function

proxC ∶ R
n → R

n, p → q = argmin
p∗∈C

(1
2
||p − p∗||2) , (19)

which maps a point p to the closest point q ∈ C, where the distance between the points is measured by the Euclidean
norm || . ||. It is immediately clear from (19) that proxC(p) = p if and only if p ∈ C. Using the just defined proximal point
function, it can be shown that two points x and y fulfill the normal cone inclusion

y ∈ C(x), (20)

if and only if they fulfill the equation

x = proxC(x + ry) (21)

for any r > 0, see Reference 22.
Using the equivalence of (20) and (21) allows to reformulate (18) as

z = −proxC(ry − z) with Rs(y, z) = 0, (22)

which reduces the problem of finding the solution of (18) to numerically finding the solution of a nonlinear equation.
Equation (22) can for example be used to define a residual R = (RT

s RT
c )T, where

Rc(x) ∶= z + proxC(ry − z) = 0 (23)
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with x = (yT zT)T. Due to the presence of proxC, the residual R is continuous but nonsmooth, hence (23) can be solved
using the semismooth (nonsmooth) Newton method,20,23 where in the Newton update

x𝜈+1 = x𝜈 − ∇R(x𝜈)−1R(x𝜈) (24)

any regular element ∇R(x𝜈) of the generalized Jacobian 𝜕R(x𝜈) can be used. The semismooth Newton method reduces to
the Newton method whenever R is differentiable. In that case, ∇R(x𝜈) is the Jacobian matrix of R at x𝜈 .

Solving (23) with the semismooth Newton method has two drawbacks if ∇R(x𝜈) is computed by finite differences.
Firstly, the accuracy of the Jacobian strongly depends on the parameter r. Moreover, using finite differences to compute
∇R(x𝜈) at a point where R is not differentiable generally leads to an arbitrary element in 𝜕R(x𝜈). Hence, we have no
control over which element of 𝜕R(x𝜈) is ultimately used for the Newton update.

As a remedy, we can use an active set formulation to treat (23), which relies on the specific knowledge of the set C. In
our case, two sets are of interest. Either C = R

−
0 ∶= {z ∈ R | z ≤ 0 } or C = B(R) ∶= {z ∈ Rn | ||z|| ≤ R}, for which the

respective proximal point functions are piecewise given as{
p ∈ R

−
0 ∶ prox

R
−
0
(p) = p

p ∉ R
−
0 ∶ prox

R
−
0
(p) = 0

and

{
p ∈ B(R) ∶ proxB(R)(p) = p
p ∉ B(R) ∶ proxB(R)(p) = R p||p|| . (25)

It follows immediately from using (25) in (23) that for C = R
−
0 the residual in (23) is equivalent to

ry − z ∈ R
−
0 ∶ Rc ∶= y = 0

ry − z ∉ R
−
0 ∶ Rc ∶= z = 0,

(26)

where we abstain from the bold notation as all variables are scalar. Proceeding all the same for C = B(R), the residual in
(23) is equivalent to

ry − z ∈ B(R) ∶ Rc ∶= y = 0
ry − z ∉ B(R) ∶ Rc ∶= z + R y||y|| = 0,

(27)

where we have used that z + R ry−z||ry−z|| = 0 is solved by z = −R y||y|| . Furthermore, ry − z ∉ B(R) implies with z ∈ B(R) that||y|| > 0. In these active set formulations of (23) the parameter r is only present in the activation condition of the residuals
and does not affect the accuracy of the computation of the Jacobian by finite differences. Moreover, since the active set
formulation gives direct access to the nondifferentiable points of the residual, we can choose to not switch between the
two pieces of the residual during the numerical differentiation process, which leads to a well-behaved Jacobian and a
more robust scheme.

Another popular strategy to solve (22) is the use of fixed point iterations, see References 6,23. For that, we use the
implicit function theorem on Rs(y, z) = 0 guaranteeing the existence of a function F such that y = F(z). Hence, the fixed
point iterations follow as

z𝜈+1 = −proxC(rF(z𝜈) − z𝜈), (28)

where generally F is not known analytically and y𝜈 = F(z𝜈) must be found numerically by solving Rs(y𝜈 , z𝜈) = 0 for y𝜈

while treating z𝜈 as a constant.

3 MECHANICAL SYSTEMS WITH FRICTIONAL CONTACTS

Consider a finite-dimensional mechanical system whose motion is described by the generalized coordinates q(t) ∈ Rn

which are considered to be functions of time t. We introduce the generalized velocities u corresponding to the time
derivative q̇ of the generalized coordinates for almost all t, that is, q̇ = u for almost all t. Equivalently, we can write

dq = u dt. (29)



CAPOBIANCO et al. 6503

We assume the generalized velocities to be special functions of locally bounded variation, that is, functions of locally
bounded variations with no singular part, see References 24,25. This implies that the left and right limits of u, respectively
denoted as u− and u+, exist and are bounded at every time instant, and that the discontinuity points of u are count-
able. In order to have the notion of velocity for every time instant, we set u = u+, that is, we consider the velocities to be
right continuous. It is well known, see References 2,26, that the differential measure du can be decomposed into the sum
of an absolutely continuous measure and a singular measure with respect to the Lebesgue measure dt. To state the
decomposition, we define the atomic measure 𝜂 as a finite sum of Dirac point measures 𝛿tk . Specifically,

d𝜂 =
∑

k
d𝛿tk , where ∫I

d𝛿tk =

{
1 if tk ∈ I
0 if tk ∉ I

. (30)

With that, the velocity measure can be decomposed as

du = a dt + (u+ − u−) d𝜂, (31)

where we call the density a the generalized acceleration of the mechanical system and where d𝜂 is concentrated on the
set of discontinuities tk of u. To complete the description of the dynamics of the mechanical system, the link between the
change in velocity du and the forces acting on the system is established by the equality of measures

M(t,q) du = dF, (32)

where M = MT denotes the mass matrix of the system and the forces are represented by the force measure dF.
We assume that the mechanical system is subjected to ng + n𝛾 ideal bilateral constraints formulated at position and

velocity level, respectively, as

g(t,q) = 0 ∈ R
ng and 𝜸(t,q,u) = 0 ∈ R

n𝛾 . (33)

By ideality of the constraint forces,2 the corresponding force directions are given by

WT
g =

𝜕g
𝜕q

and WT
𝛾 =

𝜕𝜸

𝜕u
, (34)

such that the constraint forces are

dFg𝛾 = WgdPg + W𝛾dP𝛾 , (35)

where dPg and dP𝛾 denote the constraint percussion measures. Assuming that percussions P□ are special functions of
locally bounded variation, the force measures dP□ are composed by a nonimpulsive force 𝝀□ and an impulsive force 𝚲□,
that is,

dP□ = 𝝀□dt + 𝚲□d𝜂. (36)

Hereby the box □ is used as a placeholder for any subscript, for example, for g or 𝛾 .
To model the contacts occurring in the mechanical system, we assume that they can be described by nN ideal unilateral

constraints at position level

gN(t,q) ≥ 0, (37)

where the inequality holds componentwise and gN(t,q) ∈ RnN are the gap functions describing the distance between the
tangent planes of the pairs of contact points on either contacting bodies, see References 2,27. The corresponding constraint
forces are

dFN = WNdPN with WT
N =

𝜕gN

𝜕q
. (38)
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For the contact (pair) k we say that the contact is

• open if gk
N > 0, that is, the contacting bodies are separated

• closed if gk
N = 0, that is, the contacting bodies are in contact

• penetrating if gk
N < 0, that is, the contacting bodies penetrate each other.

We define the set of active contacts as

A(t,q) =
{

k = 1, … ,nN
||| gk

N(t,q) ≤ 0
}
. (39)

It is clear from this definition, that the set of inactive contacts, that is, the complement Ā = {1, … ,nN} ⧵ A of the set
A, is the set of open contacts.

The constraint force laws describing a contact in normal direction are formulated separately for the nonimpulsive
forces 𝝀N and the impulsive forces 𝚲N composing the normal contact percussions dPN by (36). For the nonimpulsive
contact force 𝜆k

N of the kth contact we choose Signorini’s law

gk
N ∈ R

−
0
(−𝜆k

N), (40)

which assures contact impenetrability and is also known as the Signorini condition. Hereby, we assume that the contact
surfaces can only exert compressive normal contact forces 𝜆k

N on each other. The physical interpretation of Signorini’s
law is easiest understood by looking at (40) as an inequality complementarity condition

𝜆k
N ≥ 0, gk

N ≥ 0, 𝜆k
N gk

N = 0. (41)

Indeed, if 𝜆k
N > 0, the argument of the normal cone is an interior point of the set R

−
0 and the normal cone is zero,

implying gk
N = 0. On the other hand, if 𝜆k

N = 0, it follows from the definition of the normal cone (6) that R
−
0
(0) is the set

of positive numbers including zero and therefore gk
N ≥ 0. It is easy to see from Signorini’s law in the form (41) that for

open contacts, the normal contact force is zero and if the contact is closed, only forces are allowed which push the contact
surfaces apart.

For the impulsive contact forces 𝚲N , we use the gap velocity defined by

ġN(t,q,u) = WT
N(t,q) u +

𝜕gN

𝜕t
(t,q) (42)

to formulate the Newton-type impact law as

k ∈ A ∶ 𝜉k
N ∈ R

−
0
(−Λk

N)
k ∈ Ā ∶ Λk

N = 0.

Herein, we have introduced the kinematic quantity

𝜉k
N(t,q,u

−,u+) = ġk
N(t,q,u

+) + ek
N ġk

N(t,q,u
−) (44)

for the k-th contact with restitution coefficient ek
N . The impact law (43) implies that whenever an impact takes place, that

is, Λk
N > 0, the postimpact velocity ġk+

N = ġk
N(t,q,u

+) is related to the similarly defined preimpact velocity by Newton’s
impact law

ġk+
N = −ek

N ġk−
N . (45)

More details on the intricacies of the generalized Newton’s impact law (43) can be found in References 28,29. Fric-
tion between the surfaces of the k-th contact is described by a set-valued force law. Therefore, nk

F velocity parameters
𝜸k

F(t,q,u) ∈ R
nk

F describing the relative motion of the surfaces are typically introduced, where nk
F = 1 for planar friction,
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nk
F = 2 for spatial friction and nk

F ≥ 3 for combined friction laws such as Coulomb–Contensou friction.30 The friction
forces have the form

dFF = WFdPF =
nN∑

k=1
Wk

FdPk
F with (Wk

F)
T =

𝜕𝜸k
F

𝜕u
, (46)

where WF = (W1
F … WnN

F ) and dPF =
(
(dP1

F)T … (dPnN
F )T) T.

With CF denoting the set of admissible (negative) friction forces, the constitutive laws for the nonimpulsive and
impulsive friction forces of the k-th contact are

𝜸k
F ∈ CF (𝜆k

N )
(−𝝀k

F) and 𝝃k
F ∈ CF (Λk

N )
(−𝚲k

F) (47)

whenever the contact k is active, that is, k ∈ A. Moreover, the set CF depends on the normal contact forces and we have
introduced

𝝃k
F(t,q,u

−,u+) = 𝜸k
F(t,q,u

+) + ek
F 𝜸k

F(t,q,u
−) (48)

with restitution coefficient ek
F . Otherwise, if the contact k is open, the friction forces are zero.

For the sake of simplicity, in this article we restrict ourselves to sets of admissible (negative) friction forces having
the form

CF(𝜆k
N) =

{
𝝀k

F ∈ R
nk

F
||| ||𝝀k

F|| ≤ 𝜇k𝜆k
N

}
(49)

with friction coefficient 𝜇k and mention how the general case can be treated wherever it seems appropriate.
The most prominent example having the form (49) is isotropic spatial Coulomb friction. As described in Reference

27, in that case we have nk
F = 2 since the velocity parameters correspond to two orthogonal velocities which are tangent

to the contact surfaces.
Under the premise that all forces which are not constraint or contact forces, such as spring forces, gyroscopic terms,

and dashpot forces, are nonimpulsive and can therefore be represented by a Lebesgue-density h(t,q,u), the totality of
forces acting on the mechanical system is represented by

dF = hdt + dFg𝛾 + dFN + dFF

= hdt + WgdPg + W𝛾dP𝛾 + WNdPN + WFdPF . (50)

Consequently, the equality of measure (32) takes the form

Mdu = hdt + WgdPg + W𝛾dP𝛾 + WN dPN + WFdPF . (51)

With (31) and (36) in mind, we conclude from (51) that the acceleration of the system is characterized by the equations
of motion

Ma = h + Wg𝝀g + W𝛾𝝀𝛾 + WN𝝀N + WF𝝀F (52)

holding for dt-almost everywhere in time and the velocity jumps are given by the impact equations

M(u+ − u−) = Wg𝚲g + W𝛾𝚲𝛾 + WN𝚲N + WF𝚲F . (53)

4 ACCELERATION LEVEL CONSTRAINTS AND STABILIZATION

In this section, we formulate the bilateral constraints as well as Signorini’s law on acceleration level. Moreover, a stabi-
lization on velocity and position level in the sense of Gear–Gupta–Leimkuhler is introduced to avoid constraint drift in
the numerical scheme.
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In order to formulate the bilateral constraints (33) on acceleration level, we introduce the constraint velocity

ġ(t,q,u) = WT
g (t,q)u +

𝜕g
𝜕t

(t,q) (54)

as well as the constraint accelerations

g̈(t,q,u, a) = WT
g (t,q) a + 𝜕ġ

𝜕q
(t,q,u) u + 𝜕ġ

𝜕t
(t,q,u),

𝜸̇(t,q,u, a) = WT
𝛾 (t,q) a + 𝜕𝜸

𝜕q
(t,q,u) u + 𝜕𝜸

𝜕t
(t,q,u).

(55)

With those, the bilateral constraints (33) are equivalently formulated by demanding

g̈(t,q,u, a) = 0 and 𝜸̇(t,q,u, a) = 0 (56)

for dt-almost everywhere as well as

ġ(t,q,u+) = 0 and 𝜸(t,q,u+) = 0 (57)

whenever a velocity jump occurs. Clearly, these conditions are equivalent to the original constraints only if the initial
conditions are chosen appropriately, that is, the initial conditions must fulfill the original constraints (33).

As described in [ 2, p. 138], we can use the gap velocity (42) and the gap acceleration

g̈N(t,q,u, a) = WT
N(t,q) a +

𝜕ġN

𝜕q
(t,q,u) u +

𝜕ġN

𝜕t
(t,q,u) (58)

to formulate the Signorini condition (40) at velocity and acceleration level, respectively. Specifically, on velocity level
Signorini’s law reads as

k ∈ A ∶ ġk
N ∈ R

−
0
(−𝜆k

N)
k ∈ Ā ∶ 𝜆k

N = 0
dt-a.e., (59)

whereas on acceleration level we have

k ∈ B ∶ g̈k
N ∈ R

−
0
(−𝜆k

N)
k ∈ B ∶ 𝜆k

N = 0
dt-a.e., (60)

where we have introduced the set

B(t,q,u) =
{

k ∈ A ||| ġk
N(t,q,u) ≤ 0

}
(61)

characterizing the contacts that are active on position as well as on velocity level. The complement of B is again denoted
as B = {1, … ,nN} ⧵ B and by definition includes Ā as a subset, that is, Ā ⊆ B. It is important to point out that if the
motion fulfills Signorini’s law on one kinematic level, it does so also on all other kinematic levels provided that the initial
conditions are compatible with the other kinematic levels.

It is well known that the constraints of a mechanical system can be formulated on acceleration level dt-almost every-
where without changing its motions. Moreover, the acceleration level constraints come with favorable mathematical
properties. During impact free time intervals, for example, the presence of position level constraints leads to a DAE of
index three. A formulation of the system with constraints on acceleration level reduces to a DAE of index one, which are
often easier to solve numerically than higher index DAEs. However, the described index reduction by differentiation is
prone to numerical drift, meaning that although the constraint is satisfied on acceleration level, the corresponding posi-
tion and velocity level constraints are violated due to numerical integration errors. As a remedy, the position and velocity
level constraints can be stabilized by introducing additional Lagrange multipliers. This stabilization, initially proposed
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by Reference 8 and hence known by the name Gear–Gupta–Leimkuhler (GGL) method, can analogously be extended to
unilateral constraints, see Reference 13.

To stabilize the constraints, we formally extend the kinematics of the system to

dq = (u + uS) dt,
du = (a + aS) dt + (u+ − u−) d𝜂, (62)

where we have added the velocity uS and the acceleration aS caused by the stabilization to (29) and (31), respectively. The
multipliers 𝝂g, 𝝂𝛾 , and 𝝂N then take care of the stabilization of (56) and (60) on velocity level by demanding

MaS = Wg𝝂g + W𝛾𝝂𝛾 + WN𝝂N

ġ(t,q,u) = 0 dt-a.e.
𝜸(t,q,u) = 0 dt-a.e. (63)

k ∈ A ∶ ġk
N ∈ R

−
0
(−𝜈k

N)
k ∈ Ā ∶ 𝜈k

N = 0.
dt-a.e.

Note, that the stabilization (63) demands ġ = 0 for almost all time instants, which combined to (57) yields the condition
ġ = 0 for all time instants. The same reasoning holds for 𝜸 = 0.

We use the multipliers 𝝁g and 𝝁N to stabilize the constraints (56) and (60) on position level by

MuS = Wg𝝁g + WN𝝁N ,

g(t,q) = 0,
gk

N ∈ R
−
0
(−𝜇k

N) (64)

for all contacts k.
It can be shown that, in absence of numerical errors, the solution of the equations of motion formulated with stabilized

acceleration level constraints have vanishing Lagrange multipliers 𝝂□ and 𝝁□ dt-almost everywhere and therefore aS =
uS = 0 for almost all time instants. Moreover, it can be shown that the remaining quantities solve the equations of motion
with constraints formulated on position and velocity level described in Section 3. This fact establishes the mechanical
equivalence of the original equations of motion of Section 3 and the equations of motion with stabilized acceleration level
constraints presented in this section.

5 NONSMOOTH GENERALIZED-𝛂 DISCRETIZATION

To compute the motion of the mechanical system numerically, in this section we derive a time-stepping scheme from the
family of generalized-𝛼 methods. The scheme is derived by integrating the equations of motion with stabilized acceleration
level constraints over a time interval I = (ti, ti+1] and introducing appropriate discrete variables.

Considering the velocity u(t) as a right-continuous function, the velocity of the system at a time t can be written as

u(t) = u(ti) + ∫(ti,t]
du = u(ti) + ∫

t

ti

a dt + ∫(ti,t]
(aS dt + (u+ − u−) d𝜂), (65)

where we have used (62). Similarly, the position of the system at time ti+1 is

q(ti+1) = q(ti) + ∫I
dq = q(ti) + ∫I

u dt + ∫I
uS dt, (66)

which with the help of (65) can be reformulated to

q(ti+1) = q(ti) + ∫I
u(ti) dt + ∫I ∫

t

ti

a d𝜏 dt + ∫I
U(t, ti) dt + ∫I

uS dt, (67)
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where we have denoted the last integral in (65) by

U(t, ti) = ∫(ti,t]
(aS dt + (u+ − u−) d𝜂). (68)

To derive the position and velocity updates of the scheme, numerical approximations of the integrals in (65) and (67)
using quadratures have to be introduced. As approximants for the position, velocity, and acceleration at some time instant
ti we introduce qi, ui, and ai, respectively. Moreover, we define the discrete variables

Ui+1 = U(ti+1, ti) and Qi+1 = ∫I
U(t, ti) dt + ∫I

uS dt. (69)

The integrals of the acceleration a in (65) and (67) are discretized in the fashion of a generalized-𝛼 method13 using the
quadratures

∫I
a dt ≈ Δt

(
(1 − 𝛾)ai + 𝛾ai+1

)
∫I ∫

t

ti

a d𝜏 dt ≈ Δt2

2
(
(1 − 2𝛽)ai + 2𝛽ai+1

)
, (70)

where the auxiliary acceleration variables a are linked to the approximants of the acceleration by

𝛼mai + (1 − 𝛼m)ai+1 = 𝛼f ai + (1 − 𝛼f )ai+1 (71)

and the time step of the scheme is introduced as Δt = ti+1 − ti. The coefficients 𝛼f , 𝛼m, 𝛽, and 𝛾 can be chosen according to
Newmark,31 Hilber–Hughes–Taylor,15 or Chung and Hulbert.16 We choose the last option, which results in a second-order
scheme with an adjustable level of numerical dissipation in the high-frequency range. We introduce the spectral radius
at infinite frequencies 𝜌∞ ∈ [0, 1], which controls the dissipation in the high-frequency range. The coefficients of the
scheme are then given by

𝛼m = 2𝜌∞ − 1
𝜌∞ + 1

, 𝛼f =
𝜌∞

𝜌∞ + 1
, 𝛾 = 1

2
+ 𝛼f − 𝛼m and 𝛽 = 1

4

(1
2
+ 𝛾

)
2. (72)

For 𝜌∞ = 1 the scheme shows the minimal and for 𝜌∞ = 0 the maximal amount of dissipation in the high-frequency
regime.

Finally, the position and velocity updates

ui+1 = ui + Δt
(
(1 − 𝛾)ai + 𝛾ai+1

)
+ Ui+1,

qi+1 = qi + Δt ui +
Δt2

2
(
(1 − 2𝛽)ai + 2𝛽ai+1

)
+ Qi+1 (73)

are obtained by using (70) and (69) in (65) and (67), respectively.
The equations of motion (52) are discretized as

Mi+1 ai+1 = hi+1 +
∑

□∈{g,𝛾,N,F}
W□,i+1 𝝀□,i+1, (74)

where the subscript i + 1 indicates that the quantity is evaluated at ti+1, qi+1 and when applicable at ui+1, for example,
hi+1 = h(ti+1,qi+1,ui+1) and Mi+1 = M(ti+1,qi+1). Moreover, we have introduced 𝝀□,i+1 to approximate the forces 𝝀□.

To find the discrete equations for Ui+1, consider the approximation

∫I
M(aS dt + (u+ − u−) d𝜂) ≈ Mi+1Ui+1, (75)

which is exact for a constant mass matrix. Furthermore, we approximate

∫I
WK(𝝂Kdt + 𝚲Kd𝜂) ≈ WK,i+1𝚲K,i+1 and ∫I

WF𝚲Fd𝜂 ≈ WF,i+1𝚲F,i+1, (76)
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which are exact if W□ is constant and where we have introduced the discrete variables

𝚲K,i+1 ∶= ∫I
𝝂Kdt + 𝚲Kd𝜂 and 𝚲F,i+1 ∶= ∫I

𝚲Fd𝜂 (77)

with K ∈ {g, 𝛾,N}. In view of (53) and (63), the above discretizations (75) and (76) yield the discrete impact equations

Mi+1Ui+1 =
∑

K∈{g,𝛾,N}
WK,i+1𝚲K,i+1 + WF,i+1𝚲F,i+1. (78)

From the definition of the atomic measure (30), we see that the discrete variables 𝚲K,i+1 and 𝚲F,i+1 consist of the sum
of impulsive forces

∑
k 𝚲K(tk), respectively

∑
k 𝚲F(tk), corresponding to collisions in the time interval I. In addition, 𝚲K,i+1

contains a contribution due to the stabilization of the constraints.
The discrete equation for Qi+1 is found from the approximation

∫I ∫(ti,t]
M(aS d𝜏 + (u+ − u−) d𝜂)dt + ∫I

MuSdt ≈ Mi+1Qi+1. (79)

Finally, it is by combining the impact equation (53) with the stabilizing conditions (63) and (64) that we can motivate
the discrete equation

Mi+1Qi+1 =
∑

K∈{g,N}
WK,i+1𝜿K,i+1 +

∑
R∈{𝛾,F}

Δt
2

WR,i+1𝚲R,i+1. (80)

Hereby, we have introduced the discrete variables 𝜿K,i+1 with K ∈ {g,N} as

𝜿K,i+1 ∶= ∫I ∫(ti,t]
(𝝂Kd𝜏 + 𝚲Kd𝜂)dt + ∫I

𝝁Kdt (81)

and have used the approximation

∫I ∫(ti,t]
WK(𝝂Kdt + 𝚲Kd𝜂)dt + ∫I

WK𝝁Kdt ≈ WK,i+1𝜿K,i+1, (82)

similar to (76). Moreover, we have approximated the remaining double integrals by

∫I ∫(ti,t]
(𝝂𝛾dt + 𝚲𝛾d𝜂) dt ≈ Δt

2
𝚲𝛾,i+1 and ∫I ∫(ti,t]

𝚲Fd𝜂 dt ≈ Δt
2
𝚲F,i+1. (83)

Similar to standard DAE solvers,32 the bilateral constraints on all kinematic levels are discretized by just evaluating
them at the end of the time step. For the constraints originating from a position level constraint that is

g(ti+1,qi+1) = 0, ġ(ti+1,qi+1,ui+1) = 0 and g̈(ti+1,qi+1,ui+1, ai+1) = 0, (84)

whereas for constraints originating from a velocity level constraint, we have

𝜸(ti+1,qi+1,ui+1) = 0 and 𝜸̇(ti+1,qi+1,ui+1, ai+1) = 0. (85)

6 DISCRETE NORMAL CONTACT LAWS

Since we aim at an event-capturing time-stepping scheme, we do not resolve the contact dynamics during a time step
I = (ti, ti+1] in all detail, but rather derive discrete contact laws capturing the contact dynamics occurring during the time
step. More precisely, we derive discrete normal contact laws such that at the end of the time step impenetrability is satisfied
on all kinematic levels while capturing the effects of Newton’s impact law.
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We start the discretization of the normal contact laws from the acceleration level Signorini conditions (60). Since the
velocity of the system is continuous between velocity jumps, implying ġk+

N = ġk−
N = ġk

N dt-a.e., we have that

(1 + ek
N)ġ

k
N = ġk+

N + ek
N ġk−

N = 𝜉k
N dt-a.e., (86)

where we have used the definition (44) of 𝜉k
N . Consequently, in view of ek

N ≥ 0, we can replace the condition ġk
N ≤ 0 with

𝜉k
N ≤ 0 in (61). The discrete Signorini conditions then result by evaluating all quantities in (60) at the end of the time step.

Thus, we have

k ∈ Bi+1 ∶ g̈k
N,i+1 ∈ R

−
0
(−𝜆k

N,i+1)
k ∈ Bi+1 ∶ 𝜆k

N,i+1 = 0
, (87)

where we have used the notation

gk
N,i+1 = gk

N(ti+1,qi+1)

𝜉k
N,i+1 = 𝜉k

N(ti+1,qi+1,ui,ui+1)

g̈k
N,i+1 = g̈k

N(ti+1,qi+1,ui+1, ai+1) (88)

and defined the discrete version of (61) as

Bi+1 =
{

k ∈ Ai+1
||| 𝜉k

N,i+1 ≤ 0
}
, where Ai+1 = A(ti+1,qi+1). (89)

To formulate the normal contact law on velocity level, we combine Signorini’s law on velocity level, the impact law
and the stabilization condition. For that, consider the case of active normal contact, that is, k ∈ A. Then, Signorini’s law
and the stabilization condition

ġk
N ∈ R

−
0
(−𝜆k

N) and ġk
N ∈ R

−
0
(−𝜈k

N) (90)

hold dt-almost everywhere, respectively. Using the cone property of the normal cone, we may write (1 + ek
N) in front of

ġk
N in (90), which in view of (86) takes the form

𝜉k
N ∈ R

−
0
(−𝜆k

N) and 𝜉k
N ∈ R

−
0
(−𝜈k

N). (91)

The proposed reformulation of the combined Signorini and stabilization condition has the same form as the impact
law (43), which reads as

𝜉k
N ∈ R

−
0
(−Λk

N). (92)

With this preparatory work, we can finally proceed toward a discrete law. Since we are interested in the end of the
time step, we use the set Ai+1 introduced in (89) to determine whether the contact k is active on position level at the end
of the time step. If this contact is active, that is, k ∈ Ai+1, we assume the contact to be active during the whole time step.
Furthermore, we assume 𝜉k

N to be constant within a time step I = (ti, ti+1] and to correspond to 𝜉k
N,i+1, which allows to

combine (91) and (92) in integral form as

k ∈ Ai+1 ∶ 𝜉k
N,i+1 ∈ R

−
0

(
−∫I

(
(𝜆k

N + 𝜈k
N)dt + Λk

Nd𝜂
))

, (93)

where we have used Proposition 2. If k ∈ Āi+1, the integral in (93) is zero.
At this point it is appropriate to qualitatively discuss the assumptions leading to (93). For that, we look at two cases.

Either there is no collision in the time interval I and only nonimpulsive motion takes place on I(case i) or there is impulsive
motion during the time interval I (case ii).
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(i) Purely nonimpulsive motion on I: Since the contact is closed at the end of the time step and there is no collision, the
contact must either have been closed during the whole time step, or it must have closed at some tc ∈ I = (ti, ti+1]
with ġk

N(tc) = 0. In the first case, the contact velocity ġk
N vanishes on I and by (86) we have 𝜉k

N = 0 on I justifying
the approximation. In the second case, for which the contact closes during the time step we have ġk

N(ti) < 0 and
ġk

N(ti+1) ≥ 0, which is at best approximated by 𝜉k
N,i+1 = 0. This allows the integral over the contact forces in (93) to be

nonzero, which can capture the exact dynamics.
(ii) Impulsive motion on I: There are one or more collisions or other events causing impulsive motion (a dynamic catas-

trophe). Then we have to admit that the impulsive part of the motion is dominating the dynamics on I and we may
neglect the nonimpulsive motion. The error which we then make in the nonimpulsive description by falsely consid-
ering 𝜉k

N to be constant is then small and of the order of the time step. If the collision takes place at tc ∈ I = (ti, ti+1],
then we approximate 𝜉k

N(tc,q(tc),u−(tc),u+(tc)) by 𝜉k
N(ti+1,q(ti+1),u(ti),u(ti+1)). This approximation becomes exact in

the limit of Δt ↓ 0.

Finally, Equation (93) suggests a discrete normal contact law on velocity level given by

k ∈ Ai+1 ∶ 𝜉k
N,i+1 ∈ R

−
0
(−Pk

N,i+1)
k ∈ Āi+1 ∶ Pk

N,i+1 = 0,
(94)

where the discrete percussion is defined by

PN,i+1 = 𝚲N,i+1 + Δt
(
(1 − 𝛾)𝝀N,i + 𝛾𝝀N,i+1

)
. (95)

Hereby, we have introduced the auxiliary force variables 𝝀N linked to the approximants of the contact forces by

𝛼m𝝀N,i + (1 − 𝛼m)𝝀N,i+1 = 𝛼f𝝀N,i + (1 − 𝛼f )𝝀N,i+1. (96)

To motivate (94) as an approximation of (93), we first state that the second part of the discrete percussion (95) is a
generalized-𝛼 discretization of the integral of 𝝀N over I, see (70) and (71). This, in combination with (77), indeed shows
that the discrete percussion approximates the integral appearing in (93), that is,

PN,i+1 ≈ ∫I
((𝝀N + 𝝂N)dt + 𝚲Nd𝜂) 36)=∫I

(dPN + 𝝂Ndt) . (97)

We use the terminology “percussion”, even though the discrete variable includes the stabilizing Lagrange multipliers.
In order to state the contact law on position level, we observe that (93) also holds if we only integrate over a time span

(ti, t] ⊆ I. Moreover, the inclusion (93) implies that the integral is nonnegative if the contact k is closed at the end of the
time step. Since, in addition, the integral is zero if the contact k is open at the end of the time step, it follows that

gk
N,i+1 ∈ R

−
0

(
−∫(ti,t]

(
(𝜆k

N + 𝜈k
N)d𝜏 + Λk

Nd𝜂
))

(98)

for all t ∈ I. Moreover, we approximate the stabilization on position level (64) by

gk
N,i+1 ∈ R

−
0
(−𝜇k

N(t)) (99)

for all times t in I. Finally, we use the Proposition 2 to combine (98) and (99) to

gk
N,i+1 ∈ R

−
0

(
−
(
∫I ∫(ti,t]

(
(𝜆k

N + 𝜈k
N)d𝜏 + Λk

Nd𝜂
)

dt + ∫I
𝜇k

N dt
))

. (100)

This inclusion suggests a discrete normal contact law on position level given by

gk
N,i+1 ∈ R

−
0
(−𝜅̂k

N,i+1) with k = 1, … ,nN , (101)
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together with

𝜿̂N,i+1 = 𝜿N,i+1 +
Δt2

2

(
(1 − 2𝛽)𝝀N,i + 2𝛽𝝀N,i+1

)
. (102)

Hereby, the second part in (102) approximates the double integral of 𝝀N using the generalized-𝛼 method, see (70) and
(71), and it therefore follows from (81) that

𝜿̂N,i+1 ≈ ∫I ∫(ti,t]
((𝝀N + 𝝂N)d𝜏 + 𝚲N d𝜂) dt + ∫I

𝝁Ndt, (103)

which confirms that (101) is indeed an approximation of (100).

7 DISCRETE FRICTION LAWS

In (47) we stated the friction law of the k-th contact as

𝜸k
F ∈ CF (𝜆k

N )
(−𝝀k

F) (104)

for the case where the contact is active, that is, k ∈ A. Using the cone property of the normal cone, we may write (1 + ek
F)

in front of 𝜸k
F in (104). Furthermore, for almost all t it holds that u+(t) = u−(t) = u(t). Hence, it follows from (48) that we

may equivalently write the friction law as

𝝃k
F ∈ CF (𝜆k

N )
(−𝝀k

F). (105)

This reformulation of the friction law brings it in a similar form as the frictional impact law (47)

𝝃k
F ∈ CF (Λk

N )
(−𝚲k

F). (106)

In the following discretization process, we exploit that the set of admissible (negative) friction forces has the homo-
geneity property CF(𝛼) = 𝛼CF(1). Moreover, similar as for the laws in normal direction, we consider 𝝃k

F to be constant on
the short time-interval I and assume it to take the value

𝝃k
F,i+1 = 𝝃k

F(ti+1,qi+1,ui,ui+1).

Specifically, this translates to the friction law as

𝝃k
F,i+1 ∈ CF (𝜆k

N (t))
(
−𝝀k

F(t)
)
, ∀t ∈ I. (107)

Because 𝝃k
F,i+1 is constant on I, we can invoke (17), that is, Proposition 2 in integral form, which directly gives

𝝃k
F,i+1 ∈ CF (∫I 𝜆

k
N dt)

(
−∫I

𝝀k
F dt

)
. (108)

For the impulsive part of the motion on I, we similarly have the approximation

𝝃k
F,i+1 ∈ CF (Λk

N (t))
(
−𝚲k

F(t)
)
, ∀t ∈ I (109)

and using (17) cast the impact law in integral form

𝝃k
F,i+1 ∈ CF (∫I Λ

k
N d𝜂)

(
−∫I

𝚲k
Fd𝜂

)
. (110)
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Finally, we combine (108) and (110) by using Proposition 2 to

𝝃k
F,i+1 ∈ CF (∫I 𝜆

k
N dt+Λk

N d𝜂)

(
−∫I

(𝝀k
Fdt + 𝚲k

Fd𝜂)
)
, (111)

which motivates as approximation the discrete friction law

k ∈ Ai+1 ∶ 𝝃k
F,i+1 ∈ CF (Pk

N,i+1)
(−Pk

F,i+1)

k ∈ Āi+1 ∶ Pk
F,i+1 = 0,

(112)

where

PF,i+1 = 𝚲F,i+1 + Δt
(
(1 − 𝛾)𝝀F,i + 𝛾𝝀F,i+1

)
. (113)

Hereby, we have introduced the auxiliary discrete friction forces linked to the actual forces by

𝛼m𝝀F,i + (1 − 𝛼m)𝝀F,i+1 = 𝛼f𝝀F,i + (1 − 𝛼f )𝝀F,i+1. (114)

Clearly, because of (77) and interpreting the second part of (113) as the generalized-𝛼 approximation of the integral of
the nonimpulsive friction forces, we have

PF,i+1 ≈ ∫I
(𝚲Fd𝜂 + 𝝀Fdt)36)=∫I

dPF . (115)

Using the discrete percussion Pk
N,i+1 in (112) is finally justified by (97) since the stabilizing Lagrange multipliers are

zero for the exact solution.
Since the discrete friction law (112) combines the effects of nonimpulsive and impulsive friction forces, an additional

friction law is needed to distinguish these effects and compute values for both 𝝀k
F,i+1 and 𝚲k

F,i+1. For that, we first state
that the friction law (112) basically consists of three cases. Either the kth contact is open (k ∈ Āi+1) and Pk

F,i+1 = 0 or the
contact is active (k ∈ Ai+1) and one of the following two cases holds. In the first case, the negative discrete percussion
lies in the interior of the set of admissible negative friction forces CF(Pk

N,i+1), which by the normal cone inclusion in (112)
implies 𝝃k

F,i+1 = 0. Hence, this can be seen as the case of sticking contact and we introduce the set of sticking contacts

Dst
i+1 =

{
k ∈ Ai+1

||| 𝝃k
F,i+1 = 0

}
. (116)

The second case is the case of slipping contact, where 𝝃k
F,i+1 is nonzero and the negative discrete percussion must lie

on the boundary of the set CF(Pk
N,i+1) by (112). We write k ∈ Dsl

i+1 in that case, where obviously the set of slipping contacts
is just the complement of the set of sticking contacts, that is, Dsl

i+1 = Ai+1 ⧵ Dst
i+1.

We are now ready to state the remaining discrete friction law as

k ∈ Dst
i+1 ∶ 𝜸̇k

F,i+1 ∈ CF (𝜆k
N,i+1)

(−𝝀k
F,i+1)

k ∈ Dsl
i+1 ∶ 𝝀k

F,i+1 = 𝝀
k,sl
F,i+1

k ∈ Āi+1 ∶ 𝝀k
F,i+1 = 0,

(117)

where 𝝀
k,sl
F,i+1 denotes the element on the boundary of CF(𝜆k

N,i+1) such that

𝜸k
F,i+1 ∈ CF (𝜆k

N,i+1)
(−𝝀k,sl

F,i+1) (118)

and 𝜸̇k
F,i+1 denotes the evaluation at the end of the time step of the acceleration

𝜸̇k
F(t,q,u, a) = (Wk

F)
T(t,q) a +

𝜕𝜸k
F

𝜕q
(t,q,u) u +

𝜕𝜸k
F

𝜕t
(t,q,u). (119)
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In our case, the set of admissible friction forces is given by (49) and one can easily verify that

𝝀
k,sl
F,i+1 = −𝜇k𝜆k

N,i+1

𝜸k
F,i+1||𝜸k
F,i+1|| . (120)

In essence, the discrete friction law (117) corresponds to the evaluation of (104) at the end of the time step, with the
difference that in the sticking case, the friction law is formulated on acceleration level. We refer to [ 2, sect. 10.4] for more
details on this matter. We conclude this section with the remark, that the formulation of the sticking case on acceleration
level is strictly necessary, because otherwise the two discrete friction laws would lead to an ambiguity. Specifically, in the
sticking case, (112) would imply 𝝃k

F,i+1 = 0 and the evaluation of (104) at the end of the time step would imply 𝜸k
F,i+1 = 0,

which are the same condition in the case of ek
F = 0. Hence, in that case the two conditions collapse and create an ambiguity

which does not allow to compute 𝝀k
F,i+1 and 𝚲k

F,i+1 independently.

8 EXTENSION TO GENERAL VELOCITIES

We generalize the kinematic equation (29) to

dq = q̇(t,q,u) dt, where q̇(t,q,u) = B(t,q)u + 𝜷(t,q) (121)

with u(t) ∈ Rm and B(t,q(t)) ∈ Rn×m. Such a generalization is for example needed in rigid body dynamics, when the
orientations of the bodies are described by unit quaternions and the components of the angular velocities with respect to
a body fixed frame are chosen as velocity parameters of the system. Another prominent example is the use of minimal
coordinates and minimal velocities for a nonholonomic system, where typically m < n.

It follows immediately from (121) that

dq̇ = B(t,q)du +
𝜕q̇(t,q,u)

𝜕q
dq +

𝜕q̇(t,q,u)
𝜕t

dt.

Gathering the densities with respect to dt after using (31) and (121) allows to rewrite the differential measure of q̇ as

dq̇ = q̈(t,q,u, a)dt + B(t,q)(u+ − u−)d𝜂, (122)

where we have introduced the function

q̈(t,q,u, a) = B(t,q)a +
𝜕q̇(t,q,u)

𝜕q
q̇(t,q,u) +

𝜕q̇(t,q,u)
𝜕t

. (123)

It is straightforward to see, that after introducing the stabilization as in (62), we have

dq = q̇(t,q,u + uS)dt,
dq̇ = q̈(t,q,u, a + aS)dt + B(t,q)(u+ − u−)d𝜂.

(124)

By a similar reasoning as in Section 5, we can arrive at the corresponding position update formula given as

qi+1 = qi + Δt q̇(ti,qi,ui) +
Δt2

2
q̈
(

ti,qi,ui, (1 − 2𝛽)ai + 2𝛽ai+1
)
+ B(ti,qi)Qi+1, (125)

which generalizes the update formula (73).

9 NUMERICAL IMPLEMENTATION

In this section we apply the ideas of Section 2.3 to the nonsmooth generalized-𝛼 method. As initial conditions of the
stepping scheme, we assume that we know the values of the kinematic quantities q0, u0, a0, U0, and Q0 as well as all
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discrete forces at the initial time t0. The initial conditions must be compatible in the sense that they solve the discrete
equations of motion as well as satisfy all constraints at the initial time t0. As initial value for the auxiliary variables we
choose the first order approximation *a0 = a0 and 𝝀□,0 = 𝝀□,0.

We assume the quantities at the beginning of the time step to be known and formulate the presented scheme as a
system of nonlinear equations R(x) = 0, where

xT =
(
aT

i+1 UT
i+1 QT

i+1 𝜿T
g,i+1 𝚲T

g,i+1 𝝀T
g,i+1 𝚲T

𝛾,i+1 𝝀T
𝛾,i+1 𝜿

T
N,i+1 𝚲T

N,i+1 𝝀T
N,i+1 𝚲T

F,i+1 𝝀T
F,i+1

)
. (126)

The nonlinear equations are then solved by a semismooth Newton method. The computed x can subsequently be
used to find the remaining quantities at the end of the time step. Hence, the positions, velocities and percussions at
ti+1 are regarded as dependent on x. In fact, we can solve (71) for ai+1 and use it to compute qi+1 and ui+1 from (73) or
its generalized counterparts of Section 8. Similarly, the auxiliary contact forces can be computed from (96) and (114),
respectively. In turn, these can be directly inserted into (102), (95), and (113) to retrieve the respective values of 𝜿̂N,i+1,
PN,i+1 and PF,i+1.

Having in mind that the just mentioned quantities depend on x, the first part of the residual R is stated as

Rs =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mi+1 ai+1 − hi+1 −
∑

□∈{g,𝛾,N,F}
W□,i+1 𝝀□,i+1

Mi+1Ui+1 −
∑

□∈{g,𝛾,N,F}
W□,i+1 𝚲□,i+1

Mi+1Qi+1 −
∑

K∈{g,N}
WK,i+1𝜿K,i+1 −

∑
R∈{𝛾,F}

Δt
2

WR,i+1𝚲R,i+1

g(ti+1,qi+1)

ġ(ti+1,qi+1,ui+1)

g̈(ti+1,qi+1,ui+1, ai+1)

𝜸(ti+1,qi+1,ui+1)

𝜸̇(ti+1,qi+1,ui+1, ai+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (127)

where we assumed a splitting of the residual R = (RT
s RT

c )T into a part Rs containing all equations except the
discrete contact laws, which are contemplated in Rc. Hereby, we have chosen the subscript “s” for Rs to indi-
cate the smooth part of the residual. In order to state the remaining part of the residual, we have to formulate
the normal cone inclusions arising in the discrete contact laws as equations. This is done using the results from
Section 2.3 and gives a piecewise smooth residual RT

c = (RT
𝜅N

RT
ΛN

RT
𝜆N

RT
ΛF

RT
𝜆F
), which we subsequently set up part

by part.
We start with the normal contact law on position level (101) and use (22) to restate the law as

𝜅̂
k
N,i+1 = −prox

R
−
0

(
rgk

N,i+1 − 𝜅̂
k
N,i+1

)
k = 1, … ,nN . (128)

Equivalently, we can by (26) restate (101) as the residual

k ∈ i+1 ∶ Rk
𝜅N

∶= gk
N,i+1 = 0

k ∈ i+1 ∶ Rk
𝜅N

∶= 𝜅̂
k
N,i+1 = 0,

where we have implicitly defined the kth component Rk
𝜅N

of R𝜅N and where we have introduced the set

i+1 =
{

k = 1, … ,nN
||| rgk

N,i+1 − 𝜅̂
k
N,i+1 ≤ 0

}
(130)

together with its complement i+1 = {1, … ,nN} ⧵i+1.

*A more accurate initialization can be found on page 351 in Reference 13.



6516 CAPOBIANCO et al.

Since for contacts in i+1 we are demanding the gap to be closed at the end of the time step, see (129), we have that
i+1 contains the same contacts as Ai+1 because due to the stabilization no contact is penetrated at the end of the time
step. We can use this fact to state the residual for the contact law on velocity level.

We use again (26) to formulate the normal contact law (94) as

k ∈ i+1 ∶ Pk
N,i+1 = −prox

R
−
0

(
r𝜉k

N,i+1 − Pk
N,i+1

)
k ∈ i+1 ∶ Pk

N,i+1 = 0.
(131)

Similar to before, the kth component Rk
ΛN

of RΛN follows from (26) as

k ∈ i+1 ∶ Rk
ΛN

∶= 𝜉k
N,i+1 = 0

k ∈ i+1 ∶ Rk
ΛN

∶= Pk
N,i+1 = 0,

(132)

where we have introduced the set

i+1 =
{

k ∈ i+1
||| r𝜉k

N,i+1 − Pk
N,i+1 ≤ 0

}
(133)

as well as its complement i+1 = {1, … ,nN} ⧵ i+1. Since, i+1 is the subset of closed contacts i+1 for which by (132)
𝜉k

N,i+1 = 0, the set i+1 and Bi+1 contain the same contacts. The reasoning here is similar as on position level.
Finally, we can proceed in the same manner with the acceleration level constraint (87) and state it as

k ∈ i+1 ∶ 𝜆k
N,i+1 = −prox

R
−
0

(
rg̈k

N,i+1 − 𝜆k
N,i+1

)
k ∈ i+1 ∶ 𝜆k

N,i+1 = 0.
(134)

With this intermediate step, the k-th component Rk
𝜆N

of R𝜆N is then implicitly defined by

k ∈ i+1 ∶ Rk
𝜆N

∶= g̈k
N,i+1 = 0

k ∈  i+1 ∶ Rk
𝜆N

∶= 𝜆k
N,i+1 = 0,

(135)

where we have introduced the set

i+1 =
{

k ∈ i+1
||| rg̈k

N,i+1 − 𝜆k
N,i+1 ≤ 0

}
(136)

as well as its complement i+1 = {1, … ,nN} ⧵ i+1. Again, due to the stabilization and (135), the setsi+1 and Ci+1 contain
the same contacts along the discrete motion.

For the discrete friction laws the procedure is the same and we start with reformulating (112) as

k ∈ i+1 ∶ Pk
F,i+1 = −proxCF (Pk

N,i+1)

(
r𝝃k

F,i+1 − Pk
F,i+1

)
k ∈ i+1 ∶ Pk

F,i+1 = 0,
(137)

where we used (22). We can now use (27) to implicitly define the k-th contribution of the residual RT
ΛF

=(
(R1

ΛF
)T … (RnN

ΛF
)T
)

as

k ∈ st
i+1 ∶ Rk

ΛF
∶= 𝝃k

F,i+1 = 0,

k ∈ sl
i+1 ∶ Rk

ΛF
∶= Pk

F,i+1 + 𝜇kPk
N,i+1

𝝃k
F,i+1||𝝃k
F,i+1|| = 0,

k ∈ i+1 ∶ Rk
ΛF

∶= Pk
F,i+1 = 0,

(138)
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where we have introduced the sets

st
i+1 =

{
k ∈ i+1

||| r𝝃k
F,i+1 − Pk

F,i+1 ∈ CF(Pk
N,i+1)

}
(139)

and sl
i+1 = i+1 ⧵st

i+1. Again it is clear from (138) that the set st
i+1 corresponds the set of sticking contacts Dst

i+1 and
consequently sl

i+1 to the set of slipping contacts Dsl
i+1. This, together with (22), allows to rewrite (117) as

k ∈ st
i+1 ∶ 𝝀k

F,i+1 = −proxCF (𝜆k
N,i+1)

(
r𝜸̇k

F,i+1 − 𝝀k
F,i+1

)
,

k ∈ sl
i+1 ∶ 𝝀k

F,i+1 = −𝜇k𝜆k
N,i+1

𝜸k
F,i+1||𝜸k
F,i+1|| ,

k ∈ i+1 ∶ 𝝀k
F,i+1 = 0.

(140)

We gather the sticking contacts which are also sticking on acceleration level by

 st
i+1 =

{
k ∈ st

i+1
||| r𝜸̇k

F,i+1 − 𝝀k
F,i+1 ∈ CF(𝜆k

N,i+1)
}

(141)

and define  sl
i+1 = st

i+1 ⧵  st
i+1. Consequently, (27) allows to reformulate (140) as

k ∈  st
i+1 ∶ Rk

𝜆F
∶= 𝜸̇k

F,i+1 = 0,

k ∈  sl
i+1 ∶ Rk

𝜆F
∶= 𝝀k

F,i+1 + 𝜇k𝜆k
N,i+1

𝜸̇k
F,i+1||𝜸̇k
F,i+1|| = 0,

k ∈ sl
i+1 ∶ Rk

𝜆F
∶= 𝝀k

F,i+1 + 𝜇k𝜆k
N,i+1

𝜸k
F,i+1||𝜸k
F,i+1|| = 0,

k ∈ i+1 ∶ Rk
𝜆F

∶= 𝝀k
F,i+1 = 0,

(142)

where we implicitly defined the kth contribution of the residual RT
𝜆F

=
(
(R1

𝜆F
)T … (RnN

𝜆F
)T
)

.
Now that we have defined the residual R, we can see that it is piecewise smooth, that is, it is smooth (differentiable) in

x if the index sets i+1,i+1, … do not change in the vicinity of x. This enables us to use a semismooth Newton method
to solve R(x) = 0. Hence, a time step of the scheme can be summarized as follows:

Time step with semismooth Newton method:

1. As starting value (𝜈 = 0) we use the vector x0 constructed like (126) but by choosing the known values at the
beginning of the time step.

2. While ||R(x𝜈)||∞ ≤ TOLn and 𝜈 ≤ MAXITERn do the Newton update

x𝜈+1 = x𝜈 − ∇R(x𝜈)−1R(x𝜈) (143)

and increase 𝜈 by one. Hereby, ∇R(x𝜈) denotes the Jacobian matrix of R evaluated at x𝜈 , where the index sets
i+1,i+1, … are held constant (equal to the sets arising in the computation of R(x𝜈)) while taking the partial
derivatives.

3. Solve (71) for ai+1 and use it to compute qi+1 and ui+1 from (73) or its generalized counterparts of Section 8.
Similarly, compute the auxiliary contact forces from (96) and (114), respectively and insert these into (102), (95),
and (113) leading to 𝜿̂N,i+1, PN,i+1, and PF,i+1.

For the sake of completeness, we remark that step 3) is only needed for output purposes and is basically the first part
of the computation of R in the subsequent time step. Moreover, it is clear from (143) that the Jacobian matrix ∇R must
have full rank.

For mechanical systems without friction, the here presented scheme is very similar to the generalized-𝛼 method pre-
sented in Reference 13. The only difference lies in the residuals describing the normal contact law on position and velocity
level. Specifically, in Reference 13 the authors use 𝜅k

N,i+1 = 0 instead of 𝜅̂k
N,i+1 = 0 in (129) as well as Λk

N,i+1 = 0 instead
of Pk

N,i+1 = 0 in (132). Even though by our experience, this small difference produces if at all minimal differences in the
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motion and the forces of the simulated system, it is more than just a subtlety. In fact, replacing the contact force quan-
tities in (129) and (132) destroys the equivalence of the contact law formulated using the sets i+1 and i+1 with the
corresponding discrete contact laws formulated as normal cone inclusions.

In cases where multiple contacts with linearly dependent generalized force directions are present in the system, the
Jacobian matrix ∇R is singular. Hence, for this kind of system the equation R(x) = 0 must be solved by a method that
does not invert this Jacobian matrix. A popular choice is to reformulate the system R(x) = 0 such that it can be solved by
fixed point iterations, see Section 2.3 and References 6,23. For the aforementioned reformulation, we split the vector of
unknowns as xT = (yT zT), where

yT = (aT
i+1 UT

i+1 QT
i+1 𝜿T

g,i+1 𝚲T
g,i+1 𝝀T

g,i+1 𝚲T
𝛾,i+1 𝝀T

𝛾,i+1),

zT = (𝜿T
N,i+1 𝚲T

N,i+1 𝝀T
N,i+1 𝚲T

F,i+1 𝝀T
F,i+1). (144)

Since y does not contain any contact forces, 𝜕Rs
𝜕y

can be regular despite the presence of linearly dependent contact
force directions. Assuming that this is the case, the implicit function theorem applied to Rs(y, z) = 0 states the existence
of a function F such that y = F(z), that is, we can regard y as depending on the contact forces at the end of the time
step. Moreover, it can be seen from the derivation of the residual Rc above, that it can be equivalently formulated as
z = p(y, z), where p makes use of the proximal point function. Indeed, see for example that (129) is equivalent to (128)
or that (138) is equivalent to (137). This leaves us with an equation z = p(F(z), z), which we can solve using fixed point
iterations.

Numerically, we can find the value y = F(z) by solving Rs(y, z) = 0 for a fixed value of z using Newton’s method. The
computed value y in turn is then used in the fixed point iteration. Therefore, a time step of the scheme can be implemented
as follows:

Time step with fixed point iterations:

1. As starting value (𝜈 = 𝜇 = 0) we use the vectors y0 and z0 constructed like (144) but by choosing the known
values at the beginning of the time step.

2. While ||z𝜇 − p(y0, z𝜇)||∞ ≤ TOLfp and 𝜇 ≤ MAXITERfp do the fixed point update

(i) While ||Rs(y𝜈 , z𝜇)||∞ ≤ TOLn and 𝜈 ≤ MAXITERn, perform a Newton step

y𝜈+1 = y𝜈 − ∇yRs(y𝜈 , z𝜇)−1Rs(y𝜈 , z𝜇) (145)

and increase 𝜈 by one. Hereby, ∇yRs(y𝜈 , z𝜇) denotes the Jacobian matrix of Rs with respect to its y
dependence.

(ii) Use the converged solution y𝜈 of step (i) to perform the fixed point update

z𝜇+1 = p(y𝜈 , z𝜇). (146)

Subsequently increase 𝜇 by one and set 𝜈 = 0 as well as y0 = y𝜈 .

3. Solve (71) for ai+1 and use it to compute qi+1 and ui+1 from (73) or its generalized counterparts of Section 8.
Similarly, compute the auxiliary contact forces from (96) and (114), respectively and insert these into (102), (95),
and (113) leading to 𝜿̂N,i+1, PN,i+1, and PF,i+1.

Last but not least, it has to be mentioned that the parameter r used in the prox-equations as well as in the index
sets i+1,i+1, … could be chosen differently for every contact and even differently for the normal contact law and the
friction law of the same contact.

10 EXAMPLES

In this section we use the presented nonsmooth generalized-𝛼 scheme to obtain the time evolution of some benchmark
systems, which are all chosen such that particular features of the scheme can be validated separately.
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F I G U R E 1 Sketch of the bouncing ball system (left) and simulated time evolution for the case where 𝜔 = 0 and eN = 0.5 (right)

10.1 Rotating bouncing ball

Following References 33,34, we look at a homogeneous rigid sphere of radius R = 0.1 and mass m = 1 which is constrained
to move in the (eI

x–eI
y)-plane and which under the influence of gravity with gravitational acceleration g = 9.81 falls on a

horizontal plane, see Figure 1. To parametrize the motion of the ball, we choose the minimal coordinates q = (x y 𝜑)T,
where the center of mass S of the sphere is addressed by the representation IrOS = (x y 0)T of the position vector rOS
with respect to the basis I. Moreover, the angle 𝜑 describes the orientation of the sphere. The velocity parameters u =
(ux uy u𝜑)T are chosen to correspond to q̇ whenever the time derivative of the coordinates exist. Consequently, we have

M =
⎛⎜⎜⎜⎝
m 0 0
0 m 0
0 0 𝜃S

⎞⎟⎟⎟⎠ and h =
⎛⎜⎜⎜⎝

0
− mg

0

⎞⎟⎟⎟⎠ (147)

with the rotational inertia 𝜃S = 2
5

mR2 of the sphere. Finally, the contact with the plane is described by the gap function

gN = y − R and 𝛾F = ux + Ru𝜑, (148)

which is the relative horizontal velocity of the contact point with respect to the plane and with (49) describes planar
Coulomb friction. We choose the friction coefficient 𝜇 = 0.2 and the restitution coefficient eF = 0.

To validate the presented scheme, three simulations are instructive. For all of them we choose q(0) = (0 1 0)T as initial
configuration and use u(0) = (0 0 𝜔)T, such that the ball has an initial rotational velocity 𝜔.

The first case starts from rest, that is, 𝜔 = 0, and we choose eN = 0.5. This results in the typical bouncing motion,
which exhibits the Zeno phenomenon. The simulation result† is shown in Figure 1 and asserts that the proposed scheme
can overcome accumulation points.

The subsequent two cases are used to test the behavior of the scheme with respect to friction forces. For both cases, we
set eN = 0 implying that once the contact closes it remains closed, that is, the postimpact velocity is u+

y = 0, which allows
us to validate friction. At the closing time instant a frictional impact occurs. Moreover, because the ball is constantly
accelerated by gravitation, the preimpact velocity is u−

y = −
√

2g(y(0) − R). It then follows from the impact equations (53),
that the impulsive normal contact force is ΛN = m

√
2g(y(0) − R) ≈ 4.2. Furthermore, after the impact the nonimpulsive

normal contact force compensates the gravitational force and therefore takes the value 𝜆N = mg = 9.81. Depending on
the value of 𝜔, two cases arise.

In the first case, the rotational velocity is high, we choose 𝜔 = 50, and the contact slides after the impact, implying
that the friction forces attain the maximally allowed values ΛF = 𝜇ΛN ≈ 0.84 and 𝜆F = 𝜇𝜆N ≈ 1.96. After a period of
sliding contact, finally, the ball has slowed down enough such that a slip-stick transition takes place and the ball begins

†The generalized-𝛼 scheme with the following parameters was used: r = 0.3; Δt = 2 ⋅ 10−3; 𝜌∞ = 0.5; TOLn = 10−6. The semismooth Newton method
was used for all time steps and the Jacobian matrix ∇R was computed by finite differences with a step size of 𝜀 = 10−6. The maximal number of
Newton steps (143) encountered in a time step was 𝜈max = 1 and the average was 𝜈avg = 0.01.



6520 CAPOBIANCO et al.

F I G U R E 2 Simulated friction forces 𝜆F (dashed) and ΛF (solid) for the cases 𝜔 = 50 (left) and 𝜔 = 10 (right)

F I G U R E 3 Sketch of the ball in corner system (left) and simulated time evolution of the gaps (right)

a pure rolling motion described by the kinematic condition 𝛾F = 0. Since the rolling motion is described by constant
velocities, no net forces occur, implying 𝜆F = 0. Hence, at the slip-stick transition the nonimpulsive friction force instantly
jumps to zero. Figure 2 shows that the described behavior of the friction forces is perfectly reproduced by the presented
generalized-𝛼 scheme2.

In the second case, when the rotational velocity is small enough, the contact sticks at impact and the ball exhibits
a rolling motion directly after. As no friction force is needed for rolling, we have 𝜆F = 0 for all times. The preimpact
velocities are u−

x = 0 as well as u−
𝜑 = 𝜔. Since the contact sticks directly after the impact, that is, 𝛾+F = 0, from the impact

equations (53) we can deduce that the impulsive friction force takes the value ΛF = − 2
7

mR𝜔 ≈ −0.29. Again this behavior
is in perfect accordance with the simulation†, see Figure 2.

10.2 Ball in corner

A ball making frictional contact with a corner is a simple case where the Newton step (143) fails due to the singularity of
the Jacobian matrix ∇R. Consider the ball described in Section 10.1 and assume it can get in contact with two inclined
planes with inclination angles 𝛼 = 45◦ and 𝛽 = 45◦, respectively, see Figure 3.

The gap functions and the friction velocities are

gN =

(
− x sin 𝛼 + y cos 𝛼 − R
x sin 𝛽 + y cos 𝛽 − R

)
and 𝜸F =

(
ux cos 𝛼 + uy sin 𝛼 + ru𝜑

ux cos 𝛽 − uy sin 𝛽 + ru𝜑

)
. (149)

For the simulation ‡shown in Figure 3, we assumed the restitution coefficients to be e1
N = 0.5, e2

N = 0 and e1
F = e2

F = 0.
For the friction coefficients we set 𝜇1 = 𝜇2 = 0.3. Starting at rest with q(0) = (−0.5 1 0)T, the ball will eventually come

‡The generalized-𝛼 scheme with the following parameters was used: r = 0.2; Δt = 10−4; 𝜌∞ = 0.5; TOLn = TOLfp = 10−6. The semismooth Newton
method was used for all time steps, except for 13 time steps, where we had to switch to fixed-point iterations. The Jacobian matrix ∇R was computed
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F I G U R E 4 Sketch of the ball in cylinder system (left) and simulated time evolution of S (right). black: generalized-𝛼 scheme, gray:
Moreau’s time-stepping scheme

to rest with both contacts closed. It is exactly in that situation that the Jacobian matrix ∇R becomes singular and the
simulation can only be continued with fixed point iterations as solution strategy. In Figure 3, this is the case for t ≈ 1.36.

10.3 Ball in cylinder

The importance of the stabilization of the unilateral constraint at position level can impressively be shown by simulating
the ball of Section 10.1 rolling inside a cylinder of radius Rc = 1. We assume that the centerline of the cylinder is orthogonal
to the eI

x–eI
y-plane, such that it can be identified with the point P, see Figure 4.

The normal contact with the cylinder is described by the gap function

gN = Rc − R − ||rSP|| (150)

with eN = 0. Using In = (nx ny 0)T to denote the components of the inward normal n = rSP∕||rSP|| of the cylinder, we
define the tangent unit vector It = (ny − nx 0)T. With that, we can define the tangent velocity

𝛾F =I vT
S It + Ru𝜑, (151)

where the velocity of S is IvS = (ux uy 0)T. We choose the friction coefficient 𝜇 = 0.1 and the restitution coefficient eF = 0.
Looking at the trajectory of S simulated§ with the generalized-𝛼 scheme shows that the contact does not penetrate. To show
that contact penetration is a big issue for this system, we compared the trajectory of S resulting from the generalized-𝛼
scheme to the one gotten from a simulation¶ with the widely used time-stepping scheme of Moreau,1,6,35 which does not
stabilize the unilateral constraint on position level. The comparison is shown in Figure 4. For the simulation we assume
that the ball is initially at rest with q(0) = (−0.9 1 0)T.

10.4 Painlevé rod

It is well known that during the sliding motion of rigid bodies over a rough surface, a “frictional dynamic catastrophe”
can occur, that is, impulsive motion which is not the result of a collision. This phenomenon, called Painlevé paradox, is
for example studied in References 33,36,37, where the following benchmark system is used.

by finite differences with a step size of 𝜀 = 10−6. The maximal number of Newton steps (143) encountered in a time step was 𝜈max = 7 and the average
was 𝜈avg = 0.36. The maximal number of fixed-point iterations (146) encountered in a time step was 𝜇max = 281 and the average was 𝜇avg = 44.3.
§The generalized-𝛼 scheme with the following parameters was used: r = 0.3; Δt = 10−2; 𝜌∞ = 0.5; TOLn = 10−6. The semismooth Newton method was
used for all time steps and the Jacobian matrix ∇R was computed by finite differences with a step size of 𝜀 = 10−6. The maximal number of Newton
steps (143) encountered in a time step was 𝜈max = 74 and the average was 𝜈avg = 0.37.
¶Parameters for Moreau’s time-stepping scheme: r = 0.3; Δt = 10−2; TOLfp = 10−6.
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F I G U R E 5 Sketch of the Painlevé rod (left) and simulated time evolution of the angular velocity of the rod (right)

Consider a rigid homogeneous slender rod of mass m = 1, length 2l and rotational inertia 𝜃S = 1
3

ml2, where l = 1. As
shown in Figure 5, the rod moves in the eI

x–eI
y-plane and is under the influence of gravity with gravitational acceleration

g = 10. Describing the orientation of the rod by the angle 𝜑, we choose the minimal coordinates q = (x y 𝜑)T, where the
center of mass S of the rod is addressed by IrOS = (x y 0)T. Using the natural velocity coordinates u corresponding to q̇
almost everywhere, the mass matrix and the force vector of the system have the form (147). The contact of the rod’s tip
with the ground is described by

gN = y − l sin𝜑 and 𝛾F = ux − lu𝜑 sin𝜑. (152)

The friction coefficient is set to 𝜇 = 5∕3 and eN = eF = 0 is used to model inelastic impact behavior. With the initial
conditions q(0) = (0 l sin(𝜑0) 𝜑0)T and u(0) = (v 0 0)T, the rod’s tip is initially in contact and the rod slides with an initial
inclination of 𝜑0 = 31◦ and an initial horizontal velocity v = 30. As analyzed in Reference 33, this sliding motion eventu-
ally results in detaching of the contact. This detaching comes with a blowup of the accelerations and nonimpulsive contact
forces, which is seen as an impact. The blowup of the accelerations leads to vertical asymptotes in the velocities, which
constitute problems for integration schemes. However, since the asymptote is just an isolated singularity, event-capturing
schemes with constant time step might overcome these blowups, as they do not try to fully resolve it. The simulation #

result in Figure 5 shows that the presented generalize-𝛼 scheme can indeed deal with the Painlevé paradox.

10.5 Guided hopper

The suitability of the presented nonsmooth generalized-𝛼 scheme for the simulation of flexible multibody systems is
demonstrated by simulating a guided hopper. It consists of a vertically guided main body of mass M = 3, which is
addressed by the coordinate y. At the hip H with IrOH = (x0 y 0)T a rigid homogeneous rod of mass m = 1.56, length
L = 0.2, and rotational inertia 𝜃S = 8.5 ⋅ 10−3 around the rod’s center of mass is attached to the main body. x0 is the arbi-
trary horizontal position of the guidance. The orientation of the rod is prescribed by the angle 𝛼(t)which is a given function
of time. A straight planar Euler–Bernoulli beam38 with undeformed length L is connected to the knee K of the rod by an
actuated rotational joint with prescribed actuation angle 𝛽(t) as a given function of time. For the linear elastic beam we
choose the axial stiffness EA = 1.89 ⋅ 107, the bending stiffness EI = 14.2 and the mass line density 𝜚 = 0.71. Moreover,
we follow Reference 39 and discretize the centerline of the beam with B-Spline shape functions. Using the parameter
𝜉 ∈ [0, 1] to parametrize the beam and denoting the generalized coordinates of the beam by qb, a point C on the center-
line of the beam is addressed by rOC(𝜉,qb). We introduce the generalized coordinates q = (y qT

b )
T of the hopper as well as

the auxiliary quantities d = rOK − rOC(0,qb) and 𝜑 = ∡(rKH , r′OC(0,qb)), where (⋅)′ denotes the derivative with respect to
𝜉. With these quantities, the bilateral constraints composing the knee joint are

g =
⎛⎜⎜⎝

eI
x ⋅ d

eI
y ⋅ d

𝜑 − 𝛽

⎞⎟⎟⎠ . (153)

#The generalized-𝛼 scheme with the following parameters was used: r = 0.1; Δt = 8 ⋅ 10−4; 𝜌∞ = 0.9; TOLn = 10−8. The semismooth Newton method
was used for all time steps and the Jacobian matrix ∇R was computed by finite differences with a step size of 𝜀 = 10−6. The maximal number of
Newton steps (143) encountered in a time step was 𝜈max = 2 and the average was 𝜈avg = 0.07.
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F I G U R E 6 Sketch of the guided hopper (left) and simulated time evolution of the percussions (right). black: PF , gray: ±𝜇PN

Finally, the contact of the endpoint P of the beam with the horizontal plane is described by

gN = eI
y ⋅ rOC(1,qb) and 𝛾F = eI

x ⋅ vC(1,qb, q̇b), (154)

where vC is the velocity of the centerline and corresponds to the time derivative of rOC almost everywhere. The contact
parameters are set to eN = eF = 0 and 𝜇 = 0.2.

For the simulation, || the system is initially assumed to be at rest with y(0) = 0.31. Moreover, the beam is undeformed
initially. For the actuation angles

𝛼(t) = 𝜋

3
− 𝜋

30
(1 − cos(4𝜋 t)) and 𝛽(t) = 𝜋 − 2𝛼(t) (155)

have been chosen and gravity is contemplated by the gravitational acceleration g = 9.81. The percussions, plotted in
Figure 6, show that the generalized-𝛼 scheme can cope with the complex contact dynamics arising in multibody sys-
tems containing flexible parts and time dependent bilateral constraints. This makes the presented scheme well suited for
engineering applications.

10.6 Tippe top

The tippe top consists of a spherical main body at which a stick is attached. Starting from the standing position with stick
pointing up and with high spinning velocity around its symmetry axis, the top inverts and spins on the stick. Since the
spinning velocity decreases due to dissipation, the top tumbles back to the standing position after a while.

Let R1 = 1.5 ⋅ 10−2 be the radius of the sphere with center C1 characterizing the main body of the top. The rounded end
of the stick is described by a sphere of radius R2 = 5 ⋅ 10−3 and midpoint C2. The two midpoints as well as the top’s center
of mass S lie on the axis of symmetry of the top and the distances between S and the points C1 and C2 are a1 = 3 ⋅ 10−3 and
a2 = 1.6 ⋅ 10−2, respectively, see Figure 7. We describe the position of the top by the components IrOS of the position vector
of S with respect to the resting basis I. To characterize the orientation of the top, we introduce the body fixed K-frame such
that eK

z lies on the symmetry axis of the top and points toward the stick. The transformation matrix AIK = (IeK
x IeK

y Ie
K
z )

is then parametrized using a unit quaternion p. Hence, the configuration of the top is described by q = (IrT
OS pT)T. As

generalized velocities we choose u = (IvT
S K𝛀

T)T composed by the representations of the velocity vS of S and the angular
velocity of the top 𝛀 with respect to the bases I and K, respectively. As mentioned in Section 8, this choice leads to a model
with the generalized kinematic equation (121). For the relevant quantities B, 𝜷, M, and h describing a so parameterized
rigid body under the influence of gravity, we refer to Reference 40.

||The generalized-𝛼 scheme with the following parameters was used: r = 0.15; Δt = 5 ⋅ 10−5; 𝜌∞ = 0; TOLn = 10−6. The beam was discretized by two
elements of polynomial degree 2 and 5 Gauss quadrature points were used. The semismooth Newton method was used for all time steps and the
Jacobian matrix ∇R was computed analytically. The maximal number of Newton steps (143) encountered in a time step was 𝜈max = 5 and the average
was 𝜈avg = 1.23.
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F I G U R E 7 Sketch of the tippe top (left) and simulated time evolution of the angle 𝜃 (right). Black: presented model, gray: Reference 41

The mass of the top is m = 6 ⋅ 10−3 and the representation of the inertia tensor is the diagonal matrix K𝚯S =
diag(I1, I1, I3) with I1 = 8 ⋅ 10−7 and I3 = 7 ⋅ 10−7.

To describe the contact between the ground and either the main body (k = 1) or the stick (k = 2), we use the gap

gk
N = eI

z ⋅ rOCk − Rk. (156)

The friction between the top and the ground is modeled as Coulomb–Contensou friction,30 which uses the nk
F = 3

velocity parameters

𝜸k
F =

⎛⎜⎜⎜⎝
eI

x ⋅ vPk

eI
y ⋅ vPk

3𝜋R
16

eI
z ⋅𝛀

⎞⎟⎟⎟⎠ , (157)

where vPk = vCk − Rk𝛀 × eI
z denotes the velocity of the respective contact point and R = 5 ⋅ 10−4 denotes the assumed

contact radius. This friction model assumes that the normal contact force 𝜆k
N stems from a parabolic force distribution

over a circular contact area of radius R. A closer look at the velocity parameters (157) reveals that the first two velocities
correspond to tangential contact velocities and capture translational Coulomb friction. Moreover, the third component
is a representative radial contact velocity, which accounts for drilling friction. It is shown in Reference 41 that using
the friction velocity (157) together with the set of admissible friction forces (49) results in a good approximation for the
Coulomb–Contensou friction law used for the tippe top simulation in Reference 30.

For the simulation, ** the top is initially at the position IrOS(0) = (0 0 z0)T with z0 = 1.2015 ⋅ 10−2 and is inclined
by the angle 𝜃(0) = 0.1, where 𝜃 denotes the angle between eI

z and eK
z , that is, eI

z ⋅ eK
z = cos 𝜃. The center of mass S is

assumed at rest and the top spins with initial angular velocity K𝛀 = (0 0 180)T. To assure that the quaternion p remains
a unit-quaternion, p is normalized after every step.

It is apparent from Figure 7 that the simulation results using the presented scheme are in line with the results of
Reference 41 ††. This shows that the presented scheme is well suited for mechanical systems with spatial friction as well
as models with a general kinematic equation (121).

11 CONCLUSION

We presented a nonsmooth generalized-𝛼 method for the simulation of mechanical systems with frictional contact.
The dynamics of such systems, which additionally to the contacts can be subjected to ideal bilateral constraints, is
described within the theory of nonsmooth mechanics. We have modeled the frictional contact as unilateral constraints

**The generalized-𝛼 scheme with the following parameters was used: r = 0.001; Δt = 1 ⋅ 10−3; 𝜌∞ = 0.5; TOLn = 10−6. The semismooth Newton
method was used for all time steps and the Jacobian matrix ∇R was computed by finite differences with a step size of 𝜀 = 10−6. The maximal number
of Newton steps (143) encountered in a time step was 𝜈max = 3 and the average was 𝜈avg = 0.36.
††To reproduce the result of Reference 41 with Moreau’s time-stepping scheme, we used: r = 0.001; Δt = 1 ⋅ 10−4; TOLfp = 10−6.
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described by Signorini’s law, the generalized Newton’s impact law and a Coulomb-type friction law. All these laws
are formulated as normal cone inclusions, allowing for a coherent discretization of the contact laws. All constraints
are formulated on acceleration level and a numerical constraint drift, and hence contact penetration, is avoided
by stabilizing the constraints on velocity and position level using the Gear–Gupta–Leimkuhler approach. The stabi-
lized dynamics is discretized using generalized-𝛼 quadratures, which leads to a second-order accurate scheme during
impact-free time intervals. Exploiting particular properties of the normal cone enabled to directly discretize the con-
tact laws leading to their discrete counterparts, which depend on the discrete kinematic and kinetic quantities arising
from the generalized-𝛼 discretization of the dynamics. The resulting time-stepping scheme still contains normal cone
inclusions, which we have proposed to numerically treat by either a semismooth Newton method or by fixed point iter-
ations. Finally, the derived nonsmooth generalized-𝛼 method has been validated using a set of mechanical benchmark
systems.

The main contribution of this article is the extension of the nonsmooth generalized-𝛼 schemes11-14 to systems with
frictional contact and general kinematic equations. This has been achieved by formulating the set-valued Coulomb-type
friction on velocity and acceleration level. Moreover, we have introduced the discrete contact laws as normal cone inclu-
sions, which are shown to be a convenient interface to the numerical implementation of the scheme. Last but not least,
we have devised a collection of benchmark systems suitable for validating the performance of any numerical scheme for
mechanical systems with frictional contact, where every benchmark lies the focus on a different characteristics of such
systems or of the numerical scheme. These characteristics are accumulation points, slip-stick transitions, the presence of
linearly dependent force directions, contact penetration, the Painlevé paradox, the suitability of the scheme for the sim-
ulation of flexible multibody systems, combined spatial friction laws and general kinematic equations. We showed that
the presented nonsmooth generalized-𝛼 scheme performs very well for all benchmark systems and hence qualifies for a
broad range of engineering applications.

In fact, the presented scheme can reproduce the dynamics of a frictional contact adequately. Moreover, it performs well
for multibody systems containing flexible parts and allows general parametrizations such as the use of unit quaternions
for the rotation of rigid bodies.
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