Contact
Pfaffenwaldring 9
70569 Stuttgart
Deutschland
Room: 3.123
Subject
Research Project: Soft robotics
2023
- Harsch, J., Sailer, S., & Eugster, S. R. (2023). A total Lagrangian, objective and intrinsically locking-free Petrov--Galerkin SE(3) Cosserat rod finite element formulation. International Journal for Numerical Methods in Engineering, n/a(n/a), Article n/a. https://doi.org/10.1002/nme.7236
- Eugster, S. R., & Harsch, J. (2023). A family of total Lagrangian Petrov–Galerkin Cosserat rod finite element formulations. GAMM-Mitteilungen, n/a(n/a), Article n/a. https://doi.org/10.1002/gamm.202300008
2022
- Harsch, J., Ganzosch, G., Barchiesi, E., Ciallella, A., & Eugster, S. R. (2022). Experimental analysis, discrete modeling and parameter optimization of SLS-printed bi-pantographic structures. Mathematics and Mechanics of Solids, 27(10), Article 10. https://doi.org/10.1177/10812865221107623
- Eugster, S. R., Harsch, J., Herrmann, M., Capobianco, G., Bartholdt, M., & Wiese, M. (2022). Soft pneumatic actuator model based on a pressure-dependent spatial nonlinear rod theory. IEEE Robotics and Automation Letters, 7(2), Article 2. https://ieeexplore.ieee.org/document/9691781
2021
- Harsch, J., Capobianco, G., & Eugster, S. R. (2021). Dynamic simulation of the Wilberforce pendulum using constrained spatial nonlinear beam finite elements. PAMM, 21(1), Article 1. https://doi.org/10.1002/pamm.202100110
- Harsch, J., Capobianco, G., & Eugster, S. R. (2021). Finite element formulations for constrained spatial nonlinear beam theories. Mathematics and Mechanics of Solids, 26(12), Article 12. https://doi.org/10.1177/10812865211000790
- Capobianco, G., Harsch, J., Eugster, S. R., & Leine, R. I. (2021). A nonsmooth generalized-alpha method for mechanical systems with frictional contact. International Journal for Numerical Methods in Engineering, 122(22), Article 22. https://doi.org/10.1002/nme.6801
- Capobianco, G., Harsch, J., Eugster, S. R., & Leine, R. I. (2021). Simulating mechanical systems with frictional contacts using a nonsmooth generalized-alpha method. Proceedings in Applied Mathematics and Mechanics (PAMM), 21, e202100141:1--3. https://doi.org/10.1002/pamm.202100141
2020
- Harsch, J., & Eugster, S. R. (2020). Finite Element Analysis of Planar Nonlinear Classical Beam Theories. In B. E. Abali & I. Giorgio (Eds.), Developments and Novel Approaches in Nonlinear Solid Body Mechanics (pp. 123--157). Springer International Publishing. https://doi.org/10.1007/978-3-030-50460-1_10
- Eugster, S. R., & Harsch, J. (2020). A Variational Formulation of Classical Nonlinear Beam Theories. In B. E. Abali & I. Giorgio (Eds.), Developments and Novel Approaches in Nonlinear Solid Body Mechanics (pp. 95--121). Springer International Publishing. https://doi.org/10.1007/978-3-030-50460-1_9
- Barchiesi, E., Harsch, J., Ganzosch, G., & Eugster, S. R. (2020). Discrete versus homogenized continuum modeling in finite deformation bias extension test of bi-pantographic fabrics. Continuum Mechanics and Thermodynamics. https://doi.org/10.1007/s00161-020-00917-w
Seit 2018 | Wissenschaftlicher Mitarbeiter am Institut für Nichtlineare Mechanik, Universität Stuttgart |
2018 | M.Sc. Simulation Technology, Universität Stuttgart |
2016 - 2018 | Studium der Simulation Technology, Universität Stuttgart, Spezialisierungsfächer: Nichtlineare Kontinuumsmechanik & Numerische Mechanik |
2016 | B.Sc. Maschinenbau, Universität Stuttgart |
2014 - 2016 | Studium des Maschinenbaus, Universität Stuttgart, Spezialisierungsfächer: Numerische Strömungssimulation & Nichtlineare Mechanik |
2012 - 2014 | Studium der Medizintechnik, Universität Stuttgart |