Publication list of Remco Leine

back to main page of Remco Leine

The following publication list is generated through the University Library

Books

  1. Leine, R. I., Acary, V., & Brüls, O. (Hrsg.). (2018). Advanced Topics in Nonsmooth Dynamics. Transactions of the European Network for Nonsmooth Dynamics. Springer. https://doi.org/10.1007/978-3-319-75972-2
  2. Leine, R. I., & van de Wouw, N. (2008). Stability and Convergence of Mechanical Systems with Unilateral Constraints. In Lecture Notes in Applied and Computational Mechanics (Bd. 36). Springer. https://doi.org/10.1007/978-3-540-76975-0
  3. Leine, R. I., & Nijmeijer, H. (2004). Dynamics and Bifurcations of Non-Smooth Mechanical Systems. In Lecture Notes in Applied and Computational Mechanics (Bd. 18). Springer. https://doi.org/10.1007/978-3-540-44398-8

Book contributions

  1. Winandy, T., Baumann, M., & Leine, R. I. (2018). Variational analysis of inequality impact laws for perfect unilateral constraints. In R. I. Leine, V. Acary, & O. Brüls (Hrsg.), Advanced Topics in Nonsmooth Dynamics. Transactions of the European Network for Nonsmooth Dynamics (S. 47--92). Springer. https://doi.org/10.1007/978-3-319-75972-2_2
  2. Flores, P., Leine, R. I., & Glocker, C. (2011). Modeling and analysis of rigid multibody systems with translational clearance joints based on the nonsmooth dynamics approach. In K. Arczewski, W. Blajer, J. Fraczek, & M. Wojtyra (Hrsg.), Multibody Dynamics: Computational Methods and Applications (Bd. 23, S. 107–130). Springer.
  3. van de Wouw, N., & Leine, R. I. (2010). Stability and control of Lur’e-type measure differential inclusions. In A. P. G. Leonov, H. Nijmeijer & A. Fradkov (Hrsg.), Dynamics and Control of Hybrid Dynamical Systems (Bd. 14, S. 129--152). https://doi.org/10.1142/9789814282321_000
  4. Leine, R. I., Brogliato, B., & Nijmeijer, H. (2004). Periodic motion and bifurcations induced by the Painlevé paradox. In H. Irschik & K. Schlacher (Hrsg.), Advanced Dynamics and Control of Structures and Machine (No. 444; Nummer 444, S. 169--194). https://doi.org/10.1007/978-3-7091-2774-2_10
  5. Leine, R. I., van Campen, D. H., & Keultjes, W. J. G. (2003). Stick-slip whirl interaction in drillstring dynamics. In G. Rega & F. Vestroni (Hrsg.), IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics (S. 287--296). Springer. https://doi.org/10.1007/1-4020-3268-4_27

Journal publications

  1. 2024

    1. Breuling, J., Capobianco, G., Eugster, S. R., & Leine, R. I. (2024). A nonsmooth RATTLE algorithm for mechanical systems with frictional unilateral constraints. Nonlinear Analysis: Hybrid Systems, 52, 101469. https://doi.org/10.1016/j.nahs.2024.101469
    2. Bayer, F., Leine, R. I., Thomas, O., & Grolet, A. (2024). Koopman–Hill stability computation of periodic orbits in polynomial dynamical systems using a real-valued quadratic harmonic balance formulation. International Journal of Non-Linear Mechanics, 167, 104894. https://doi.org/10.1016/j.ijnonlinmec.2024.104894
  2. 2023

    1. Karoui, A. Y., & Leine, R. I. (2023). Model reduction of a periodically forced slow–fast continuous piecewise linear system. Nonlinear Dynamics. https://doi.org/10.1007/s11071-023-08858-0
    2. Bayer, F., & Leine, R. I. (2023). Sorting-free Hill-based stability analysis of periodic solutions through Koopman analysis. Nonlinear Dynamics, 111, 8439–8466. https://doi.org/10.1007/s11071-023-08247-7
  3. 2022

    1. Preiswerk, P. V., & Leine, R. I. (2022). State observers for the time discretization of a class of impulsive mechanical systems. International Journal of Robust and Nonlinear Control. https://doi.org/10.1002/rnc.6168
  4. 2021

    1. Youssef, B., & Leine, R. I. (2021). A complete set of design rules for a vibro-impact NES based on a multiple scales approximation of a nonlinear mode. Journal of Sound and Vibration, 501(116043), Article 116043. https://doi.org/10.1016/j.jsv.2021.116043
    2. Schindler, K., & Leine, R. I. (2021). Paradoxical simulation results of chaos-like chattering in the bouncing ball system. Physica D: Nonlinear Phenomena, 419. https://doi.org/10.1016/j.physd.2021.132854
    3. Sailer, S., & Leine, R. I. (2021). Singularly perturbed dynamics of the tippedisk. Proceedings of the Royal Society A, 477(2256), Article 2256. https://doi.org/10.1098/rspa.2021.0536
    4. Sailer, S., & Leine, R. I. (2021). Model reduction of the tippedisk: a path to the full analysis. Nonlinear Dynamics, 105, 1955--1975. https://doi.org/10.1007/s11071-021-06649-z
    5. Leine, R. I., Capobianco, G., Bartelt, P., Christen, M., & Caviezel, A. (2021). Stability of rigid body motion through an extended intermediate axis theorem: application to rockfall simulation. Multibody System Dynamics, 52(4), Article 4. https://doi.org/10.1007/s11044-021-09792-y?
    6. Hinze, M., Schmidt, A., & Leine, R. I. (2021). Finite element formulation of fractional constitutive laws using the reformulated infinite state representation. Fractal Fractional, 5(132), Article 132. https://doi.org/10.3390/fractalfract5030132
    7. Capobianco, G., Harsch, J., Eugster, S. R., & Leine, R. I. (2021). A nonsmooth generalized-alpha method for mechanical systems with frictional contact. International Journal for Numerical Methods in Engineering, 122(22), Article 22. https://doi.org/10.1002/nme.6801
  5. 2020

    1. Sailer, S., Eugster, S. R., & Leine, R. I. (2020). The Tippedisk: a Tippetop without rotational symmetry. Regular and Chaotic Dynamics, 25(6), Article 6. https://doi.org/10.1134/S1560354720060052
    2. Hinze, M., Schmidt, A., & Leine, R. I. (2020). The direct method of Lyapunov for nonlinear dynamical systems with fractional damping. Nonlinear Dynamics, 102, 2017--2037. https://doi.org/10.1007/s11071-020-05962-3
    3. Hinze, M., Schmidt, A., & Leine, R. I. (2020). Lyapunov stability of a fractionally damped oscillator with linear (anti-)damping. International Journal of Nonlinear Science and Numerical Simulation, 21(5), Article 5. https://doi.org/10.1515/ijnsns-2018-0381
  6. 2019

    1. Walker, S. V., & Leine, R. I. (2019). Set-valued anisotropic dry friction laws: formulation experimental verification and instability phenomenon. Nonlinear Dynamics, 96, 885--920. https://doi.org/10.1007/s11071-019-04829-6
    2. Peter, S., Schreyer, F., & Leine, R. I. (2019). A method for numerical and experimental nonlinear modal analysis of nonsmooth systems. Mechanical Systems and Signal Processing, 120, 793--807. https://doi.org/10.1016/j.ymssp.2018.11.009
    3. Hinze, M., Schmidt, A., & Leine, R. I. (2019). Numerical solution of fractional-order ordinary differential equations using the reformulated infinite state representation. Fractional Calculus and Applied Analysis, 22(5), Article 5. https://doi.org/10.1515/fca-2019-0070
  7. 2018

    1. Scheel, M., Peter, S., Leine, R. I., & Krack, M. (2018). A phase resonance approach for modal testing of structures with nonlinear dissipation. Journal of Sound and Vibration, 435, 56--73. https://doi.org/10.1016/j.jsv.2018.07.010
    2. Peter, S., Scheel, M., Krack, M., & Leine, R. I. (2018). Synthesis of nonlinear frequency responses with experimentally extracted nonlinear modes. Mechanical Systems and Signal Processing, 101, 498--515.
    3. Baumann, M., Biemond, J. J. B., Leine, R. I., & van de Wouw, N. (2018). Synchronization of impacting mechanical systems with a single constraint. Physica D: Nonlinear Phenomena, 362, 9--23. https://doi.org/10.1016/j.physd.2017.10.002
  8. 2017

    1. Winandy, T., & Leine, R. I. (2017). A maximal monotone impact law for the 3-ball Newton’s cradle. Multibody System Dynamics, 39(1--2), Article 1--2.
    2. Peter, S., & Leine, R. I. (2017). Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation. Mechanical Systems and Signal Processing, 96, 139--158.
    3. Pagitz, M., & Leine, R. I. (2017). Shape optimization of compliant pressure actuated cellular structures. International Journal of Nonlinear Mechanics, 94, 268--280. http://dx.doi.org/10.1016/j.ijnonlinmec.2017.04.009
    4. Baumann, M., & Leine, R. I. (2017). Synchronization-based estimation of the maximal Lyapunov exponent of nonsmooth systems. Procedia IUTAM, 20, 23--33.
  9. 2016

    1. Schreyer, F., & Leine, R. I. (2016). A mixed shooting harmonic balance method for unilaterally constrained mechanical systems. Archive of Mechanical Engineering, LXIII(2), Article 2.
    2. Baumann, M., & Leine, R. I. (2016). A synchronization-based state observer for impact oscillators using only collision time information. International Journal of Robust and Nonlinear Control, 26, 2542--2563.
  10. 2014

    1. Leine, R. I., Schweizer, A., Christen, M., Glover, J., Bartelt, P., & Gerber, W. (2014). Simulation of rockfall trajectories with consideration of rock shape. Multibody System Dynamics, 32, 241--271.
  11. 2012

    1. van de Wouw, N., & Leine, R. I. (2012). Robust impulsive control of motion systems with uncertain friction. International Journal of Robust and Nonlinear Control, 22(4), Article 4.
    2. Nagy, Z., Frutiger, D. R., Leine, R. I., Glocker, C., & Nelson, B. J. (2012). Modeling the motion of microrobots on surfaces using non-smooth multi-body dynamics. IEEE Transactions on Robotics.
    3. Leine, R. I., & Heimsch, T. F. (2012). Global uniform symptotic attractive stability of the non-autonomous bouncing ball system. Physica D: Nonlinear Phenomena, 241(22), Article 22. http://dx.doi.org/10.1016/j.physd.2011.04.013
    4. Leine, R. I. (2012). Non-smooth stability analysis of the parametrically excited impact oscillator. International Journal of Non-Linear Mechanics, 47, 1020--1032.
    5. Flores, P., Leine, R. I., & Glocker, C. (2012). Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems. Nonlinear Dynamics, 69, 2117--2133.
  12. 2011

    1. Leine, R. I. (2011). Zeno-gedrag in de mechanica. Nieuw Archief voor Wiskunde (Journal of the Royal Dutch Mathematical Society), NAW 5/12(1), Article 1.
  13. 2010

    1. Leine, R. I. (2010). The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dynamics, 59(1--2), Article 1--2.
    2. Flores, P., Leine, R. I., & Glocker, C. (2010). Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the nonsmooth dynamics approach. Multibody System Dynamics, 23, 165--190. https://doi.org/10.1007/978-90-481-9971-6_6
  14. 2009

    1. Leine, R. I., Aeberhard, U., & Glocker, C. (2009). Hamilton’s principle as variational inequality for mechanical systems with impact. Journal of Nonlinear Science, 19, 633--664.
    2. Leine, R. I. (2009). Experimental and theoretical investigation of the energy dissipation of a rolling disk during its final stage of motion. Archive of Applied Mechanics, 79(11), Article 11.
    3. Glocker, C., Cataldi-Spinola, E., & Leine, R. I. (2009). Curve squealing of trains: Measurement, modelling and simulation. Journal of Sound and Vibration, 324(1--2), Article 1--2.
  15. 2008

    1. Transeth, A. A., Leine, R. I., Glocker, C., Pettersen, K. Y., & Liljebäck, P. (2008). Snake robot obstacle-aided locomotion: Modeling, simulations, and experiments. IEEE Transactions on Robotics, 24(1), Article 1.
    2. Transeth, A. A., Leine, R. I., Glocker, C., & Pettersen, K. Y. (2008). 3D Snake robot motion: Non-smooth modeling, simulations, and experiments. IEEE Transactions on Robotics, 24(2), Article 2.
    3. Studer, C., Leine, R. I., & Glocker, C. (2008). Step size adjustment and extrapolation for time stepping schemes in nonsmooth dynamics. International Journal for Numerical Methods in Engineering, 76(11), Article 11.
    4. Leine, R. I., & van de Wouw, N. (2008). Uniform convergence of monotone measure differential inclusions: with application to the control of mechanical systems with unilateral constraints. International Journal of Bifurcation and Chaos, 15(5), Article 5.
    5. Leine, R. I., & van de Wouw, N. (2008). Stability properties of equilibrium sets of nonlinear mechanical systems with dry friction and impact. International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 51(4), Article 4.
  16. 2006

    1. Leine, R. I., & van Campen, D. H. (2006). Bifurcation phenomena in non-smooth dynamical systems. European Journal of Mechanics -- A/Solids, 25, 595--616.
    2. Leine, R. I. (2006). Bifurcations of equilibria in non-smooth continuous systems. Physica D: Nonlinear Phenomena, 223, 121--137.
  17. 2005

    1. Le Saux, C., Leine, R. I., & Glocker, C. (2005). Dynamics of a rolling disk in the presence of dry friction. Journal of Nonlinear Science, 15(1), Article 1.
  18. 2004

    1. van de Wouw, N., & Leine, R. I. (2004). Attractivity of equilibrium sets of systems with dry friction. International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 35(1), Article 1.
  19. 2003

    1. Leine, R. I., & van Campen, D. H. (2003). Discontinuous fold bifurcations. Systems Analysis Modelling Simulation, 43, 321--332.
    2. Leine, R. I., Glocker, C., & van Campen, D. H. (2003). Nonlinear dynamics and modeling of various wooden toys with impact and friction. Journal of Vibration and Control, 9(1), Article 1.
    3. Leine, R. I., & Glocker, C. (2003). A set-valued force law for spatial Coulomb-Contensou friction. European Journal of Mechanics -- A/Solids, 22, 193--216.
  20. 2002

    1. Leine, R. I., van Campen, D. H., & Keultjes, W. J. G. (2002). Stick-slip whirl interaction in drillstring dynamics. ASME Journal of Vibration and Acoustics, 124(2), Article 2.
    2. Leine, R. I., & van Campen, D. H. (2002). Discontinuous fold bifurcations in mechanical systems. Archive of Applied Mechanics, 72, 138--146.
    3. Leine, R. I., & van Campen, D. H. (2002). Discontinuous bifurcations of periodic solutions. Mathematical and Computer Modelling, 36(3), Article 3.
    4. Leine, R. I., Brogliato, B., & Nijmeijer, H. (2002). Periodic motion and bifurcations induced by the Painlevé paradox. European Journal of Mechanics -- A/Solids, 21(5), Article 5.
  21. 2000

    1. Leine, R. I., van Campen, D. H., & van de Vrande, B. L. (2000). Bifurcations in nonlinear discontinuous systems. International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 23(2), Article 2.
  22. 1998

    1. Leine, R. I., van Campen, D. H., de Kraker, A., & van den Steen, L. (1998). Stick-slip vibrations induced by alternate friction models. International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 16(1), Article 1.

Conference proceedings

  1. 2024

    1. Bayer, F., & Leine, R. I. (2024). Optimal projection in a Koopman-based sorting-free Hill method. In W. Lacarbonara (Hrsg.), Advances in Nonlinear Dynamics, Proceedings of the Third International Nonlinear Dynamics Conference (NODYCON 2023) (Bd. 1, S. 409–419). Springer. https://doi.org/10.1007/978-3-031-50631-4_35
    2. Youssef, B., & Leine, R. I. (2024). Vibro-impact NES: Nonlinear mode approximation using the multiple scales method. In W. Lacarbonara (Hrsg.), Advances in Nonlinear Dynamics, Proceedings of the Third International Nonlinear Dynamics Conference (NODYCON 2023): Bd. II (S. 255–266). Springer. https://doi.org/10.1007/978-3-031-50639-0_23
  2. 2022

    1. Bayer, F., & Leine, R. I. (2022, Juli). A Koopman view on the harmonic balance and Hill method. Proceedings of the 10th European Nonlinear Dynamics Conference (ENOC2020+2). https://enoc2020.sciencesconf.org/394116/
    2. Leine, R. I., Capobianco, G., Bartelt, P., & Lu, G. (2022, Juli). A rockfall simulation scheme which preserves the stability properties of rotating rocks. Proceedings of the 10th European Nonlinear Dynamics Conference (ENOC2020+2). https://enoc2020.sciencesconf.org/301850
    3. Sailer, S., & Leine, R. I. (2022, Juli). Why does the Tippedisk invert? Theory and experiments. Proceedings of the 10th European Nonlinear Dynamics Conference (ENOC2020+2).
    4. Karoui, A. Y., & Leine, R. I. (2022, Juli). Analysis of a singularly perturbed continuous piecewise linear system. Proceedings of the 10th European Nonlinear Dynamics Conference (ENOC2020+2). https://enoc2020.sciencesconf.org/394804
  3. 2021

    1. Sailer, S., Eugster, S. R., & Leine, R. I. (2021, Dezember). The Tippedisk: A minimal model for friction-induced inversion. Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2021.
    2. Capobianco, G., Harsch, J., Eugster, S. R., & Leine, R. I. (2021). Simulating mechanical systems with frictional contacts using a nonsmooth generalized-alpha method. Proceedings in Applied Mathematics and Mechanics (PAMM), 21, e202100141:1--3. https://doi.org/10.1002/pamm.202100141
    3. Leine, R. I., & Capobianco, G. (2021). An extended version of the Intermediate Axis Theorem for a freely rotating rigid body. Proceedings in Applied Mathematics and Mechanics (PAMM), 21, e202100103.
  4. 2019

    1. Preiswerk, P. V., & Leine, R. I. (2019). A nonsmooth state observer for vibro-impact systems: experimental validation. Proceedings of NODYCON 2019,.
    2. Hinze, M., Schmidt, A., & Leine, R. I. (2019). Numerical simulation of fractionally damped mechanical systems using infinite state representation. Proceedings of the 2019 International Conference on Fractional Calculus Theory and Applications (ICFCTA 2019).
  5. 2018

    1. Hinze, M., Schmidt, A., & Leine, R. I. (2018). Mechanical representation and stability of dynamical systems containing fractional springpot elements. Proceedings of the ASME 2018 International Design Engineering Technical Conferences (IDETC2018), DETC2018-85146, Article DETC2018-85146. https://doi.org/10.1115/DETC2018-85146
    2. Schindler, K., & Leine, R. I. (2018). Paradoxical chaos-like chattering in the bouncing ball system. Proceedings of the ASME 2018 International Design Engineering Technical Conferences (IDETC2018), DETC2018-85202, Article DETC2018-85202. https://doi.org/10.1115/DETC2018-85202
    3. Preiswerk, P. V., & Leine, R. I. (2018). Experimental performance verification of a synchronization based state observer using only collision time information. Proceedings of the ASME 2018 International Design Engineering Technical Conferences (IDETC2018), DETC2018-85859, Article DETC2018-85859.
    4. Schreyer, F., & Leine, R. I. (2018). Combined frequency-time reduction methods for calculating periodic solutions of unilaterally constrained systems. IUTAM Symposium on Model Order Reduction of Coupled Systems (MORCOS 2018).
    5. Peter, S., Schreyer, F., & Leine, R. I. (2018). Experimental and numerical nonlinear modal analysis of a beam with impact: Part II - Experimental investigation. Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics (IMAC).
    6. Schreyer, F., Peter, S., & Leine, R. I. (2018). Experimental and numerical nonlinear modal analysis of a beam with impact: Part I - Numerical investigation. Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics (IMAC).
  6. 2017

    1. Peter, S., Scheel, M., Krack, M., & Leine, R. (2017, Juni). Experimental frequency response synthesis for nonlinear systems. Proceedings of the 9th European Nonlinear Dynamics Conference (ENOC2017).
    2. Scheel, M., Peter, S., Leine, R., & Krack, M. (2017, Juni). Towards experimental nonlinear modal analysis of systems with nonlinear damping. Proceedings of the 9th European Nonlinear Dynamics Conference (ENOC2017).
    3. Walker, S. V., & Leine, R. I. (2017, Juni). Anisotropic dry friction with non-convex force reservoirs: modeling and experiments. Proceedings of the 9th European Nonlinear Dynamics Conference (ENOC2017).
    4. Capobianco, G., Eugster, S. R., & Leine, R. I. (2017). Moreau-type integrators based on the time finite element discretization of the virtual action. Proceedings in Applied Mathematics and Mechanics (PAMM), 17(1), Article 1. https://doi.org/10.1002/pamm.201710041
    5. Capobianco, G., Winandy, T., Eugster, S. R., & Leine, R. I. (2017). Comparison of Moreau-type integrators based on the time finite element discretization of the virtual action. Proceedings of the 9th European Nonlinear Dynamics Conference (ENOC2017).
  7. 2016

    1. Baumann, M., & Leine, R. I. (2016, August). Synchronization-based estimation of the maximal Lyapunov exponent of nonsmooth systems. 24th International Congress of Theoretical and Applied Mechanics (ICTAM 2016).
    2. Baumann, M., Biemond, J. J. B., Leine, R. I., & van de Wouw, N. (2016, August). Controlled synchronization of mechanical systems with a unilateral constraint. 10th IFAC Symposium on Nonlinear Control Systems.
    3. Peter, S., & Leine, R. I. (2016, Juli). Experimental nonlinear modal analysis using phase-locked-loop. Proceedings of the 6th International Conference on Nonlinear Vibrations, Localization and Energy Transfer.
    4. Schreyer, F., & Leine, R. I. (2016, Juni). Mixed Shooting-HBM: a periodic solution solver for unilaterally constrained systems. Proceedings of the 4th Joint International Conference on Multibody System Dynamics (IMSD).
    5. Walker, S. V., & Leine, R. I. (2016, Juni). Modeling and numerical simulation of anisotropic dry friction with non-convex friction force reservoir. Proceedings of the 4th Joint International Conference on Multibody System Dynamics (IMSD).
    6. Baumann, M., & Leine, R. I. (2016, Juni). Estimation of the maximal Lyapunov exponent of nonsmooth systems using chaos synchronization. Procedings of the 4th Joint International Conference on Multibody System Dynamics (IMSD).
    7. Peter, S., Grundler, A., Reuss, P., Gaul, L., & Leine, R. I. (2016). Towards finite element model updating based on nonlinear normal modes. In G. Kerschen (Hrsg.), Nonlinear Dynamics, Volume 1, Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015 (S. 209--217). Springer. https://doi.org/10.1007/978-3-319-15221-9_20
    8. Peter, S., Riethmüller, R., & Leine, R. I. (2016). Tracking of backbone curves of nonlinear systems using phase-locked-loops. In G. Kerschen (Hrsg.), Nonlinear Dynamics, Volume 1, Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015. Springer, Cham.
  8. 2015

    1. Baumann, M., & Leine, R. I. (2015). Synchronization-based state observer including position jumps for impacting multibody systems. Proceedings of the 54th IEEE Conference on Decision and Control (CDC), 5556--5562. https://doi.org/10.1109/CDC.2015.7403090
    2. Schreyer, F., & Leine, R. I. (2015, August). Finding periodic solutions of forced systems with local nonlinearities: a mixed shooting harmonic balance method. Proceedings of the ASME 2015 International Design Engineering Technical Conferences (IDETC). https://doi.org/10.1115/DETC2015-47461
    3. Leine, R. I., & Schreyer, F. (2015, Juni). A mixed shooting and harmonic balance method for mechanical systems with dry friction or other local nonlinearities. Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics.
    4. Winandy, T., & Leine, R. I. (2015, Juni). Towards a maximal monotone impact law for Newton’s cradle. Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics.
    5. Baumann, M., & Leine, R. I. (2015). Synchronization-based state observer for impacting multibody systems using switched geometric unilateral constraints. Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics.
    6. Leine, R. I., & Winandy, T. (2015). Nonexpansivity of the Newton’s cradle impact law. Proceedings in Applied Mathematics and Mechanics (PAMM), 15, 59--60.
  9. 2014

    1. Gehring, C., Diethelm, R., Siegwart, R., Nützi, G., & Leine, R. I. (2014). An evaluation of Moreau’s time-stepping scheme for the simulation of a legged robot. Proceedings of the ASME 2014 International Design Engineering Technical Conferences (IDETC), DETC2014-34374, Article DETC2014-34374. https://doi.org/10.1115/DETC2014-34374
    2. Baumann, M., & Leine, R. I. (2014, Juli). Convergence based synchronization of unilaterally constrained multibody systems. Proceedings of the 8th European Nonlinear Dynamics Conference (ENOC2014).
    3. Leine, R. I., & Baumann, M. (2014, Juli). Variational analysis of inequality impact laws. Proceedings of the 8th European Nonlinear Dynamics Conference (ENOC2014).
  10. 2013

    1. Leine, R. I. (2013). Parametric excitation of non-smooth systems: the unilaterally constrained Hill’s equation. Proceedings of the ECCOMAS Multibody Conference.
    2. Lang, U., Theurillat, R., Kiko, T., Kühne, S., Leine, R. I., & Cavalloni, C. (2013). High-G and high bandwidth characterization of piezoresistive MEMS accelerometers for crash test applications. Proceedings of to the AMA Sensor Conference. https://www.ama-science.org/proceedings/details/1412
    3. Baumann, M., Leine, R. I., Noiray, N., & Schuermans, B. (2013). Bifurcation analysis of self-excited thermoacoustic oscillations in damper-equipped combustion chambers. Proceedings of the ECCOMAS Multibody Conference.
  11. 2012

    1. Christen, M., Bühler, Y.and Bartelt, P., Leine, R., Glover, J., Schweizer, A., Graf, C., McArdell, B. W., Gerber, W., Deubelbeiss, Y., Feistl, T., & Volkwein, A. (2012). Integral hazard management using a unified software environment: numerical simulation tool „RAMMS“ for gravitational natural hazards. Proceedings 12th Congress INTERPRAEVENT, 1, 77--86.
    2. Glover, J., Schweizer, A., Christen, M., Gerber, W., Leine, R. I., & Bartelt, P. (2012). Numerical investigation of the influence of rock shape on rockfall trajectory. Geophysical Research Abstracts, 14(EGU2012-11022–1), Article EGU2012-11022–1.
  12. 2011

    1. Leine, R. I., & Aeberhard, U. (2011, Juli). On the principle of Hamilton as variational inequality. Proceedings of the 7th European Nonlinear Dynamics Conference (ENOC2011).
    2. Heimsch, T., & Leine, R. I. (2011, Juli). A novel Lyapunov-like method for the non-autonomous bouncing ball system. Proceedings of the 7th European Nonlinear Dynamics Conference (ENOC2011).
    3. Schweizer, A., Leine, R. I., & Glocker, C. (2011). Simulation of rockfall using the non-smooth contact dynamics approach. Proceedings of the EUROMECH Colloquium Nonsmooth contact and impact laws in mechanics.
    4. van de Wouw, N., & Leine, R. I. (2011). Impulsive control of mechanical motion systems with uncertain friction. Proceedings of the 50th IEEE Conference on Decision and Control (CDC 2011), 4176--4182. https://doi.org/10.1109/CDC.2011.6160361
  13. 2010

    1. Nagy, Z., Frutiger, D. R., Leine, R. I., Glocker, C., & Nelson, B. J. (2010). Modeling and analysis of wireless resonant magnetic microactuators. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2010), 1598--1603. https://doi.org/10.1109/ROBOT.2010.5509260
  14. 2009

    1. Flores, P., Leine, R. I., & Glocker, C. (2009, September). Application of the nonsmooth dynamics formulation to model and analyze the contact-impact events in slider-crank and cam-follower systems. Proceedings of the 7th EUROMECH Solid Mechanics Conference (ESMC2009).
    2. Leine, R. I. (2009, September). Measurements of the finite-time singularity of the Euler disk. Proceedings of the 7th EUROMECH Solid Mechanics Conference (ESMC2009).
    3. Möller, M., & Leine, R. I. (2009, September). An efficient approximation of orthotropic set-valued force laws of normal cone type. Proceedings of the 7th EUROMECH Solid Mechanics Conference (ESMC2009).
    4. Heimsch, T. F., & Leine, R. I. (2009, September). Lyapunov stability theory for nonsmooth non-autonomous mechanical systems applied to the bouncing ball problem. Proceedings of the ASME 2009 International Design Engineering Technical Conferences (IDETC). https://doi.org/10.1115/DETC2009-87185
    5. Flores, P., Leine, R. I., & Glocker, C. (2009). Modeling and analysis of rigid multibody systems with translational clearance joints based on the nonsmooth dynamics approach. Proceedings of the Multibody Dynamics 2009 ECCOMAS Thematic Conference.
  15. 2008

    1. van de Wouw, N., & Leine, R. I. (2008). Tracking control for a class of measure differential inclusions. Proceedings of the 47th IEEE Conference on Decision and Control (CDC), 2526--2532. https://doi.org/10.1109/CDC.2008.4738683
    2. van de Wouw, N., & Leine, R. I. (2008). Convergence properties of monotone measure differential inclusions. Proceedings of the 6th European Nonlinear Dynamics Conference (ENOC2008), 2526--2532.
    3. Leine, R. I., & Aeberhard, U. (2008). A weak form of Hamilton’s principle as variational inequality. Proceedings of the 6th European Nonlinear Dynamics Conference (ENOC2008), 2526--2532.
  16. 2007

    1. Leine, R. I., & van de Wouw, N. (2007, Juni). Stability and attractivity of mechanical systems with unilateral constraints. Proceedings of the 2007 ECCOMAS Thematic Conference on Multibody Dynamics.
    2. Leine, R. I., & Aeberhard, U. (2007). The Euler-Maupertuis principle of least action as variational inequality. Proceedings in Applied Mathematics and Mechanics (PAMM), 7, 4010019--4010020. https://doi.org/10.1002/pamm.200700666
  17. 2006

    1. van de Wouw, N., & Leine, R. I. (2006). Stability of stationary sets in nonlinear systems with set-valued friction. Proceedings of the 45th IEEE Conference on Decision and Control and European Control Conference (CDC2006), 4271--4276.
    2. Transeth, A. A., Leine, R. I., Glocker, C., & Pettersen, K. Y. (2006). Non-smooth 3D modeling of a snake robot with external objects. Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics (ROBIO2006).
    3. Transeth, A. A., Leine, R. I., Glocker, C., & Pettersen, K. Y. (2006). Non-smooth 3D modeling of a snake robot with frictional unilateral constraints. Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics (ROBIO2006).
  18. 2005

    1. Leine, R. I., & van de Wouw, N. (2005, September). Dry friction induced attractivity of equilibrium sets in mechanical multibody systems. Proceedings of the Design Engineering Technical Conferences & Computers and Information in Engineering Conference (DETC 2005), ASME Symposium on Nonlinear Dynamics In Engineering Systems. https://doi.org/10.1115/DETC2005-84221
    2. van de Wouw, N., & Leine, R. I. (2005, August). Stability properties of equilibrium sets of controlled linear mechanical systems with dry friction. Proceedings of the 5th European Nonlinear Dynamics Conference (ENOC 2005).
    3. Leine, R. I., Le Saux, C., & Glocker, C. (2005, August). Friction models for the rolling disk. Proceedings of the 5th European Nonlinear Dynamics Conference (ENOC 2005).
    4. van de Wouw, N., Leine, R. I., & Nijmeijer, H. (2005). Controlling attractivity of friction-induced equilibrium sets. Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference (CDC2005), 2610--2615.
  19. 2003

    1. Leine, R. I., & Glocker, C. (2003, September). A set-valued force law for spatial Coulomb-Contensou friction. Proceedings of the Design Engineering Technical Conferences & Computers and Information in Engineering Conference (DETC 2003), ASME Symposium on Nonlinear Dynamics In Engineering Systems. https://doi.org/10.1115/DETC2003/VIB-48426
  20. 2002

    1. Leine, R. I., Brogliato, B., & Nijmeijer, H. (2002). Periodic motion and bifurcations induced by the Painlevé paradox. Proceedings of the International Conference on Nonsmooth/Nonconvex Mechanics with Applications, 291--298.
    2. Leine, R. I., & van Campen, D. H. (2002). Some aspects of bifurcations in non-smooth mechanical systems. Proceedings of the 5th International Conference on Vibration Engineering, 349--357.
  21. 2001

    1. Leine, R. I., Glocker, C., & van Campen, D. H. (2001, September). Nonlinear Dynamics of the Woodpecker Toy. Proceedings of Design Enineering Technical Conferences & Computers and Information in Engineering Conference (DETC 2001) ASME Symposium on Nonlinear Dynamics and Control In Engineering Systems. https://doi.org/10.1115/detc2001/vib-21608
  22. 1999

    1. Leine, R. I., & van Campen, D. H. (1999, September). Fold bifurcations in discontinuous systems. Proceedings of the Design Engineering Technical Conferences & Computers and Information in Engineering Conference (DETC 1999).

Theses

  1. Leine, R. I. (2006). On the Stability of Motion in Non-smooth Mechanical Systems [Habilitation thesis]. ETH Zurich.
  2. Leine, R. I. (2000). Bifurcations in Discontinuous Mechanical Systems of Filippov-Type [Eindhoven University of Technology]. https://doi.org/DOI: 10.6100/IR533239

Miscellaneous

  1. Leine, R. I. (1997). Literature Survey on Torsional Drillstring Vibrations (No. WFW 97.069; Nummer WFW 97.069). Eindhoven University of Technology.
  2. van den Steen, L., van Buren, M., Leine, R. I., van Campen, D. H., & de Kraker, A. (1997). Combating torsion drillstring oscillations. In Alles Beweegt, 40th jubilee publication of the student society „Simon Stevin“.
  3. Leine, R. I. (1996). Nonlinear Drillstring and Thruster Dynamics.
Zum Seitenanfang